利用时间序列聚类和强化学习估算航天器惯性参数

Konstantinos Platanitis, Miguel Arana-Catania, Leonardo Capicchiano, Saurabh Upadhyay, Leonard Felicetti
{"title":"利用时间序列聚类和强化学习估算航天器惯性参数","authors":"Konstantinos Platanitis, Miguel Arana-Catania, Leonardo Capicchiano, Saurabh Upadhyay, Leonard Felicetti","doi":"arxiv-2408.03445","DOIUrl":null,"url":null,"abstract":"This paper presents a machine learning approach to estimate the inertial\nparameters of a spacecraft in cases when those change during operations, e.g.\nmultiple deployments of payloads, unfolding of appendages and booms, propellant\nconsumption as well as during in-orbit servicing and active debris removal\noperations. The machine learning approach uses time series clustering together\nwith an optimised actuation sequence generated by reinforcement learning to\nfacilitate distinguishing among different inertial parameter sets. The\nperformance of the proposed strategy is assessed against the case of a\nmulti-satellite deployment system showing that the algorithm is resilient\ntowards common disturbances in such kinds of operations.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spacecraft inertial parameters estimation using time series clustering and reinforcement learning\",\"authors\":\"Konstantinos Platanitis, Miguel Arana-Catania, Leonardo Capicchiano, Saurabh Upadhyay, Leonard Felicetti\",\"doi\":\"arxiv-2408.03445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a machine learning approach to estimate the inertial\\nparameters of a spacecraft in cases when those change during operations, e.g.\\nmultiple deployments of payloads, unfolding of appendages and booms, propellant\\nconsumption as well as during in-orbit servicing and active debris removal\\noperations. The machine learning approach uses time series clustering together\\nwith an optimised actuation sequence generated by reinforcement learning to\\nfacilitate distinguishing among different inertial parameter sets. The\\nperformance of the proposed strategy is assessed against the case of a\\nmulti-satellite deployment system showing that the algorithm is resilient\\ntowards common disturbances in such kinds of operations.\",\"PeriodicalId\":501163,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种机器学习方法,用于估计航天器在运行过程中发生变化时的惯性参数,例如有效载荷的多次部署、附属装置和吊杆的展开、推进剂消耗以及在轨维修和主动碎片清除运行过程中的惯性参数。机器学习方法使用时间序列聚类和强化学习生成的优化执行序列来区分不同的惯性参数集。以多卫星部署系统为例,对所提策略的性能进行了评估,结果表明该算法能够抵御此类操作中的常见干扰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spacecraft inertial parameters estimation using time series clustering and reinforcement learning
This paper presents a machine learning approach to estimate the inertial parameters of a spacecraft in cases when those change during operations, e.g. multiple deployments of payloads, unfolding of appendages and booms, propellant consumption as well as during in-orbit servicing and active debris removal operations. The machine learning approach uses time series clustering together with an optimised actuation sequence generated by reinforcement learning to facilitate distinguishing among different inertial parameter sets. The performance of the proposed strategy is assessed against the case of a multi-satellite deployment system showing that the algorithm is resilient towards common disturbances in such kinds of operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1