用神经网络重构荧光望远镜记录的超高频红外辐射的能量和到达方向

Mikhail Zotovfor the JEM-EUSO Collaboration
{"title":"用神经网络重构荧光望远镜记录的超高频红外辐射的能量和到达方向","authors":"Mikhail Zotovfor the JEM-EUSO Collaboration","doi":"arxiv-2408.02440","DOIUrl":null,"url":null,"abstract":"Fluorescence telescopes are important instruments widely used in modern\nexperiments for registering ultraviolet radiation from extensive air showers\n(EASs) generated by cosmic rays of ultra-high energies. We present a\nproof-of-concept convolutional neural network aimed at reconstruction of energy\nand arrival directions of primary particles using model data for two telescopes\ndeveloped by the international JEM-EUSO collaboration. We also demonstrate how\na simple convolutional encoder-decoder can be used for EAS track recognition.\nThe approach is generic and can be adopted for other fluorescence telescopes.","PeriodicalId":501163,"journal":{"name":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of energy and arrival directions of UHECRs registered by fluorescence telescopes with a neural network\",\"authors\":\"Mikhail Zotovfor the JEM-EUSO Collaboration\",\"doi\":\"arxiv-2408.02440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence telescopes are important instruments widely used in modern\\nexperiments for registering ultraviolet radiation from extensive air showers\\n(EASs) generated by cosmic rays of ultra-high energies. We present a\\nproof-of-concept convolutional neural network aimed at reconstruction of energy\\nand arrival directions of primary particles using model data for two telescopes\\ndeveloped by the international JEM-EUSO collaboration. We also demonstrate how\\na simple convolutional encoder-decoder can be used for EAS track recognition.\\nThe approach is generic and can be adopted for other fluorescence telescopes.\",\"PeriodicalId\":501163,\"journal\":{\"name\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Instrumentation and Methods for Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Instrumentation and Methods for Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

荧光望远镜是现代实验中广泛使用的重要仪器,用于记录由超高能量宇宙射线产生的大范围空气淋浴(EAS)的紫外线辐射。我们介绍了一个概念验证卷积神经网络,旨在利用国际 JEM-EUSO 合作组织开发的两台望远镜的模型数据重建原生粒子的能量和到达方向。我们还演示了如何将简单的卷积编码器-解码器用于 EAS 轨迹识别。该方法具有通用性,可用于其他荧光望远镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstruction of energy and arrival directions of UHECRs registered by fluorescence telescopes with a neural network
Fluorescence telescopes are important instruments widely used in modern experiments for registering ultraviolet radiation from extensive air showers (EASs) generated by cosmic rays of ultra-high energies. We present a proof-of-concept convolutional neural network aimed at reconstruction of energy and arrival directions of primary particles using model data for two telescopes developed by the international JEM-EUSO collaboration. We also demonstrate how a simple convolutional encoder-decoder can be used for EAS track recognition. The approach is generic and can be adopted for other fluorescence telescopes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bright unintended electromagnetic radiation from second-generation Starlink satellites Likelihood reconstruction of radio signals of neutrinos and cosmic rays An evaluation of source-blending impact on the calibration of SKA EoR experiments WALLABY Pilot Survey: HI source-finding with a machine learning framework Black Hole Accretion is all about Sub-Keplerian Flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1