利用声波波形和深度学习自动识别结构中的裂纹

Mohamed Barbosh, Liangfu Ge, Ayan Sadhu
{"title":"利用声波波形和深度学习自动识别结构中的裂纹","authors":"Mohamed Barbosh, Liangfu Ge, Ayan Sadhu","doi":"10.1186/s43065-024-00102-2","DOIUrl":null,"url":null,"abstract":"Structural elements undergo multiple levels of damage at various locations due to environments and critical loading conditions. The level of damage and its location can be predicted using acoustic emission (AE) waveforms that are captured from the generation of inherent microcracks. Existing AE methods are reliant on the feature selection of the captured waveforms and may be subjective in nature. To automate this process, this paper proposes a deep-learning model to predict the damage severity and its expected location using AE waveforms. The model is based on a densely connected convolutional neural network (CNN) that offers superior feature extraction and minimal training data requirements. Time-domain AE waveforms are used as inputs of the proposed model to automate the process of predicting the severity of damage and identifying the expected location of the damage in structural elements. The proposed approach is validated using AE data collected from a concrete beam and a wooden beam and plate. The results show the capability of the proposed method for predicting the level of damage with an accuracy range of 92-95% and identifying the approximate location of damage with 90-100% accuracy. Thus, the proposed method serves as a robust technique for damage severity prediction and localization in civil structures.","PeriodicalId":73793,"journal":{"name":"Journal of infrastructure preservation and resilience","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated crack identification in structures using acoustic waveforms and deep learning\",\"authors\":\"Mohamed Barbosh, Liangfu Ge, Ayan Sadhu\",\"doi\":\"10.1186/s43065-024-00102-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Structural elements undergo multiple levels of damage at various locations due to environments and critical loading conditions. The level of damage and its location can be predicted using acoustic emission (AE) waveforms that are captured from the generation of inherent microcracks. Existing AE methods are reliant on the feature selection of the captured waveforms and may be subjective in nature. To automate this process, this paper proposes a deep-learning model to predict the damage severity and its expected location using AE waveforms. The model is based on a densely connected convolutional neural network (CNN) that offers superior feature extraction and minimal training data requirements. Time-domain AE waveforms are used as inputs of the proposed model to automate the process of predicting the severity of damage and identifying the expected location of the damage in structural elements. The proposed approach is validated using AE data collected from a concrete beam and a wooden beam and plate. The results show the capability of the proposed method for predicting the level of damage with an accuracy range of 92-95% and identifying the approximate location of damage with 90-100% accuracy. Thus, the proposed method serves as a robust technique for damage severity prediction and localization in civil structures.\",\"PeriodicalId\":73793,\"journal\":{\"name\":\"Journal of infrastructure preservation and resilience\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of infrastructure preservation and resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43065-024-00102-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of infrastructure preservation and resilience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43065-024-00102-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于环境和关键载荷条件的影响,结构元件在不同位置会发生多级损坏。可以利用从固有微裂缝产生过程中捕获的声发射(AE)波形来预测损伤程度及其位置。现有的 AE 方法依赖于对捕获波形的特征选择,可能具有主观性。为了使这一过程自动化,本文提出了一种深度学习模型,利用 AE 波形预测损坏严重程度及其预期位置。该模型基于密集连接的卷积神经网络 (CNN),具有卓越的特征提取能力和最低的训练数据要求。时域 AE 波形用作拟议模型的输入,以自动预测损坏严重程度并确定结构元件中损坏的预期位置。利用从混凝土梁和木梁及木板上收集的 AE 数据对所提出的方法进行了验证。结果表明,所提方法预测损坏程度的准确率为 92-95%,识别损坏大致位置的准确率为 90-100%。因此,所提出的方法是一种用于民用结构损坏严重程度预测和定位的稳健技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated crack identification in structures using acoustic waveforms and deep learning
Structural elements undergo multiple levels of damage at various locations due to environments and critical loading conditions. The level of damage and its location can be predicted using acoustic emission (AE) waveforms that are captured from the generation of inherent microcracks. Existing AE methods are reliant on the feature selection of the captured waveforms and may be subjective in nature. To automate this process, this paper proposes a deep-learning model to predict the damage severity and its expected location using AE waveforms. The model is based on a densely connected convolutional neural network (CNN) that offers superior feature extraction and minimal training data requirements. Time-domain AE waveforms are used as inputs of the proposed model to automate the process of predicting the severity of damage and identifying the expected location of the damage in structural elements. The proposed approach is validated using AE data collected from a concrete beam and a wooden beam and plate. The results show the capability of the proposed method for predicting the level of damage with an accuracy range of 92-95% and identifying the approximate location of damage with 90-100% accuracy. Thus, the proposed method serves as a robust technique for damage severity prediction and localization in civil structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Automated crack identification in structures using acoustic waveforms and deep learning Inspection prioritization of gravity sanitary sewer systems using supervised machine learning algorithms Numerical investigation on the deformation of railway embankment under normal faulting Evaluation of the physical characteristics of reinforced concrete subject to corrosion using a poro-elastic acoustic model inversion technique applied to ultrasonic measurements An investigation of belief-free DRL and MCTS for inspection and maintenance planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1