{"title":"基于模型的直接自控驱动开口绕组 IPMSM 电机转矩预测控制","authors":"Hyung-Woo Lee, Hyeon-Jun Park, Kyo-Beum Lee","doi":"10.1007/s43236-024-00887-1","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a method for the torque ripple reduction of an open-end winding interior permanent magnet synchronous motor (OEW-IPMSM) using direct self-control (DSC). The conventional DSC has been researched in high-power systems because of its advantages in terms of a low switching frequency and a fast response of torque. Nevertheless, high torque ripple is a disadvantage of the conventional DSC. This is because the trajectory of the stator flux is controlled in the shape of a hexagon for lower switching frequencies and by applying hysteresis torque control. In this paper, predictive torque control using a mathematical model of an OEW-IPMSM is presented to improve the quality of the torque control. In addition, the presented method addresses the trajectory control of the flux using the diverse voltage vectors of the dual inverter. The validity of the presented method is demonstrated by simulations and experimental results.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"28 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-based predictive torque control of open-end winding IPMSMs driven by direct self-control\",\"authors\":\"Hyung-Woo Lee, Hyeon-Jun Park, Kyo-Beum Lee\",\"doi\":\"10.1007/s43236-024-00887-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a method for the torque ripple reduction of an open-end winding interior permanent magnet synchronous motor (OEW-IPMSM) using direct self-control (DSC). The conventional DSC has been researched in high-power systems because of its advantages in terms of a low switching frequency and a fast response of torque. Nevertheless, high torque ripple is a disadvantage of the conventional DSC. This is because the trajectory of the stator flux is controlled in the shape of a hexagon for lower switching frequencies and by applying hysteresis torque control. In this paper, predictive torque control using a mathematical model of an OEW-IPMSM is presented to improve the quality of the torque control. In addition, the presented method addresses the trajectory control of the flux using the diverse voltage vectors of the dual inverter. The validity of the presented method is demonstrated by simulations and experimental results.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00887-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00887-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Model-based predictive torque control of open-end winding IPMSMs driven by direct self-control
This paper proposes a method for the torque ripple reduction of an open-end winding interior permanent magnet synchronous motor (OEW-IPMSM) using direct self-control (DSC). The conventional DSC has been researched in high-power systems because of its advantages in terms of a low switching frequency and a fast response of torque. Nevertheless, high torque ripple is a disadvantage of the conventional DSC. This is because the trajectory of the stator flux is controlled in the shape of a hexagon for lower switching frequencies and by applying hysteresis torque control. In this paper, predictive torque control using a mathematical model of an OEW-IPMSM is presented to improve the quality of the torque control. In addition, the presented method addresses the trajectory control of the flux using the diverse voltage vectors of the dual inverter. The validity of the presented method is demonstrated by simulations and experimental results.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.