用先进的 Routh 近似法减少 z 域区间系统的阶次

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Circuits, Systems and Signal Processing Pub Date : 2024-08-07 DOI:10.1007/s00034-024-02799-8
Praveen Kumar, Pankaj Rai, Amit Kumar Choudhary
{"title":"用先进的 Routh 近似法减少 z 域区间系统的阶次","authors":"Praveen Kumar, Pankaj Rai, Amit Kumar Choudhary","doi":"10.1007/s00034-024-02799-8","DOIUrl":null,"url":null,"abstract":"<p>Since decades mathematicians have been designing the transfer function for the available physical models followed by the involvement of control engineers to work on it. Through the study of the offered representations, many systems were found to be of higher order which are nevertheless not easy to study and analyze in their core form. Furthermore, again uncertainties within the system was found that cannot be ignored. All these increases the complexities for analysis of the physical systems. This demands a technique for order reduction to derive an approximate lower order representation of the higher order systems. In continuation, this paper is an attempt to propose a computationally efficient approach for obtaining the reduced interval model based on <i>Routh Approximation</i> technique. The proposed approach is a novel method for discrete-time interval system and is discussed in detail in the article content ahead. The provided examples offer the desired explanation for the effectiveness of the proposed algorithm.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order Reduction of z-Domain Interval Systems by Advanced Routh Approximation Method\",\"authors\":\"Praveen Kumar, Pankaj Rai, Amit Kumar Choudhary\",\"doi\":\"10.1007/s00034-024-02799-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Since decades mathematicians have been designing the transfer function for the available physical models followed by the involvement of control engineers to work on it. Through the study of the offered representations, many systems were found to be of higher order which are nevertheless not easy to study and analyze in their core form. Furthermore, again uncertainties within the system was found that cannot be ignored. All these increases the complexities for analysis of the physical systems. This demands a technique for order reduction to derive an approximate lower order representation of the higher order systems. In continuation, this paper is an attempt to propose a computationally efficient approach for obtaining the reduced interval model based on <i>Routh Approximation</i> technique. The proposed approach is a novel method for discrete-time interval system and is discussed in detail in the article content ahead. The provided examples offer the desired explanation for the effectiveness of the proposed algorithm.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02799-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02799-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,数学家们一直在为现有的物理模型设计传递函数,随后控制工程师也参与其中。通过对所提供的表示方法进行研究,发现许多系统都是高阶系统,但要研究和分析其核心形式并不容易。此外,还发现系统内部存在一些不容忽视的不确定性。所有这些都增加了物理系统分析的复杂性。这就需要一种阶次缩减技术来推导出高阶系统的近似低阶表示。因此,本文试图提出一种基于 Routh 近似技术的高效计算方法,以获得简化的区间模型。所提出的方法是离散时间区间系统的一种新方法,将在文章内容中详细讨论。所提供的示例为所提算法的有效性提供了所需的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Order Reduction of z-Domain Interval Systems by Advanced Routh Approximation Method

Since decades mathematicians have been designing the transfer function for the available physical models followed by the involvement of control engineers to work on it. Through the study of the offered representations, many systems were found to be of higher order which are nevertheless not easy to study and analyze in their core form. Furthermore, again uncertainties within the system was found that cannot be ignored. All these increases the complexities for analysis of the physical systems. This demands a technique for order reduction to derive an approximate lower order representation of the higher order systems. In continuation, this paper is an attempt to propose a computationally efficient approach for obtaining the reduced interval model based on Routh Approximation technique. The proposed approach is a novel method for discrete-time interval system and is discussed in detail in the article content ahead. The provided examples offer the desired explanation for the effectiveness of the proposed algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Circuits, Systems and Signal Processing
Circuits, Systems and Signal Processing 工程技术-工程:电子与电气
CiteScore
4.80
自引率
13.00%
发文量
321
审稿时长
4.6 months
期刊介绍: Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area. The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing. The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published. Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.
期刊最新文献
Squeeze-and-Excitation Self-Attention Mechanism Enhanced Digital Audio Source Recognition Based on Transfer Learning Recursive Windowed Variational Mode Decomposition Discrete-Time Delta-Sigma Modulator with Successively Approximating Register ADC Assisted Analog Feedback Technique Individually Weighted Modified Logarithmic Hyperbolic Sine Curvelet Based Recursive FLN for Nonlinear System Identification Event-Triggered $$H_{\infty }$$ Filtering for A Class of Nonlinear Systems Under DoS Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1