{"title":"立体声回声控制的深度混合模型","authors":"Yang Liu, Sichen Liu, Feiran Yang, Jun Yang","doi":"10.1007/s00034-024-02807-x","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a deep hybrid model for stereophonic acoustic echo cancellation (SAEC). A two-stage model is considered, i.e., a deep-learning-based Kalman filter (DeepKalman) and a gated convolutional recurrent network (GCRN)-based postfilter, which are jointly trained in an end-to-end manner. The difference between the proposed DeepKalman filter and the conventional one is twofold. First, the input signal of the DeepKalman filter is a combination of the original two far-end signals and the nonlinear reference signal estimated from the microphone signal directly. Second, a low-complexity recurrent neural network is utilized to estimate the covariance of the process noise, which can enhance the tracking capability of the DeepKalman filter. In the second stage, we adopt GCRN to suppress residual echo and noise by estimating complex masks applied to the output signal of the first stage. Computer simulations confirm the performance advantage of the proposed method over existing SAEC algorithms.</p>","PeriodicalId":10227,"journal":{"name":"Circuits, Systems and Signal Processing","volume":"18 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Hybrid Model for Stereophonic Acoustic Echo Control\",\"authors\":\"Yang Liu, Sichen Liu, Feiran Yang, Jun Yang\",\"doi\":\"10.1007/s00034-024-02807-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a deep hybrid model for stereophonic acoustic echo cancellation (SAEC). A two-stage model is considered, i.e., a deep-learning-based Kalman filter (DeepKalman) and a gated convolutional recurrent network (GCRN)-based postfilter, which are jointly trained in an end-to-end manner. The difference between the proposed DeepKalman filter and the conventional one is twofold. First, the input signal of the DeepKalman filter is a combination of the original two far-end signals and the nonlinear reference signal estimated from the microphone signal directly. Second, a low-complexity recurrent neural network is utilized to estimate the covariance of the process noise, which can enhance the tracking capability of the DeepKalman filter. In the second stage, we adopt GCRN to suppress residual echo and noise by estimating complex masks applied to the output signal of the first stage. Computer simulations confirm the performance advantage of the proposed method over existing SAEC algorithms.</p>\",\"PeriodicalId\":10227,\"journal\":{\"name\":\"Circuits, Systems and Signal Processing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circuits, Systems and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00034-024-02807-x\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circuits, Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00034-024-02807-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Deep Hybrid Model for Stereophonic Acoustic Echo Control
This paper proposes a deep hybrid model for stereophonic acoustic echo cancellation (SAEC). A two-stage model is considered, i.e., a deep-learning-based Kalman filter (DeepKalman) and a gated convolutional recurrent network (GCRN)-based postfilter, which are jointly trained in an end-to-end manner. The difference between the proposed DeepKalman filter and the conventional one is twofold. First, the input signal of the DeepKalman filter is a combination of the original two far-end signals and the nonlinear reference signal estimated from the microphone signal directly. Second, a low-complexity recurrent neural network is utilized to estimate the covariance of the process noise, which can enhance the tracking capability of the DeepKalman filter. In the second stage, we adopt GCRN to suppress residual echo and noise by estimating complex masks applied to the output signal of the first stage. Computer simulations confirm the performance advantage of the proposed method over existing SAEC algorithms.
期刊介绍:
Rapid developments in the analog and digital processing of signals for communication, control, and computer systems have made the theory of electrical circuits and signal processing a burgeoning area of research and design. The aim of Circuits, Systems, and Signal Processing (CSSP) is to help meet the needs of outlets for significant research papers and state-of-the-art review articles in the area.
The scope of the journal is broad, ranging from mathematical foundations to practical engineering design. It encompasses, but is not limited to, such topics as linear and nonlinear networks, distributed circuits and systems, multi-dimensional signals and systems, analog filters and signal processing, digital filters and signal processing, statistical signal processing, multimedia, computer aided design, graph theory, neural systems, communication circuits and systems, and VLSI signal processing.
The Editorial Board is international, and papers are welcome from throughout the world. The journal is devoted primarily to research papers, but survey, expository, and tutorial papers are also published.
Circuits, Systems, and Signal Processing (CSSP) is published twelve times annually.