基于滑动模式的工业滚道光生物反应器软传感器

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2024-07-23 DOI:10.1016/j.biosystemseng.2024.07.015
E. Delgado , J.C. Moreno , E. Rodríguez-Miranda , A. Baños , A. Barreiro , J.L. Guzmán
{"title":"基于滑动模式的工业滚道光生物反应器软传感器","authors":"E. Delgado ,&nbsp;J.C. Moreno ,&nbsp;E. Rodríguez-Miranda ,&nbsp;A. Baños ,&nbsp;A. Barreiro ,&nbsp;J.L. Guzmán","doi":"10.1016/j.biosystemseng.2024.07.015","DOIUrl":null,"url":null,"abstract":"<div><p>Microalgae reactors provide an efficient and clean alternative for the production of biofuels, nutritional and cosmetic bioproducts, wastewater treatment, and mitigation of industrial gases to reduce greenhouse gas emissions. The main control objective in these systems is productivity optimisation. For this reason, real-time monitoring of key biological performance indicators affecting microalgae production such as microalgae growth rate, biomass concentration, dissolved oxygen, pH level or total inorganic carbon is crucial. However, there are no sufficiently robust solutions on the market to estimate or measure all of these variables, especially for open reactors on an industrial scale. This paper presents a new online state estimator, based on a robust sliding mode observer combined with a nonlinear dynamic model endowed with a minimum number of states to capture dynamics of key biological performance indicators. This soft-sensor has been verified with a realistic reactor model that has been experimentally tested. Simulations showed promising results in terms of accuracy (with mean values of the state estimation errors in the order of 10<sup>−4</sup> <em>g m</em><sup>−3</sup> for the biomass concentration, 10<sup>−5</sup> to 10<sup>−13</sup> <em>mol m</em><sup>−3</sup> for the other states and deviations in the order of 10<sup>−4</sup> <em>g m</em><sup>−3</sup> for the biomass concentration, 10<sup>−5</sup> to 10<sup>−10</sup> <em>mol m</em><sup>−3</sup> for the other states) and robustness with respect to signal noise, state deviations, initial errors and parametric uncertainty.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"246 ","pages":"Pages 1-12"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft-sensor based on sliding modes for industrial raceway photobioreactors\",\"authors\":\"E. Delgado ,&nbsp;J.C. Moreno ,&nbsp;E. Rodríguez-Miranda ,&nbsp;A. Baños ,&nbsp;A. Barreiro ,&nbsp;J.L. Guzmán\",\"doi\":\"10.1016/j.biosystemseng.2024.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microalgae reactors provide an efficient and clean alternative for the production of biofuels, nutritional and cosmetic bioproducts, wastewater treatment, and mitigation of industrial gases to reduce greenhouse gas emissions. The main control objective in these systems is productivity optimisation. For this reason, real-time monitoring of key biological performance indicators affecting microalgae production such as microalgae growth rate, biomass concentration, dissolved oxygen, pH level or total inorganic carbon is crucial. However, there are no sufficiently robust solutions on the market to estimate or measure all of these variables, especially for open reactors on an industrial scale. This paper presents a new online state estimator, based on a robust sliding mode observer combined with a nonlinear dynamic model endowed with a minimum number of states to capture dynamics of key biological performance indicators. This soft-sensor has been verified with a realistic reactor model that has been experimentally tested. Simulations showed promising results in terms of accuracy (with mean values of the state estimation errors in the order of 10<sup>−4</sup> <em>g m</em><sup>−3</sup> for the biomass concentration, 10<sup>−5</sup> to 10<sup>−13</sup> <em>mol m</em><sup>−3</sup> for the other states and deviations in the order of 10<sup>−4</sup> <em>g m</em><sup>−3</sup> for the biomass concentration, 10<sup>−5</sup> to 10<sup>−10</sup> <em>mol m</em><sup>−3</sup> for the other states) and robustness with respect to signal noise, state deviations, initial errors and parametric uncertainty.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":\"246 \",\"pages\":\"Pages 1-12\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024001685\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001685","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

微藻反应器为生物燃料、营养和化妆品生物产品的生产、废水处理以及减少温室气体排放的工业气体缓和提供了一种高效、清洁的替代方法。这些系统的主要控制目标是优化生产率。因此,对影响微藻生产的关键生物性能指标(如微藻生长率、生物量浓度、溶解氧、pH 值或无机碳总量)进行实时监控至关重要。然而,目前市场上还没有足够强大的解决方案来估计或测量所有这些变量,特别是对于工业规模的开放式反应器。本文介绍了一种新的在线状态估算器,该估算器基于稳健的滑模观测器,并结合了一个具有最少状态数的非线性动态模型,以捕捉关键生物性能指标的动态变化。这种软传感器已通过实验测试的现实反应器模型进行了验证。模拟结果表明,该传感器在准确性(生物量浓度的状态估计误差平均值为 10-4 g m-3,其他状态为 10-5 至 10-13 mol m-3;生物量浓度的状态估计误差平均值为 10-4 g m-3,其他状态为 10-5 至 10-10 mol m-3)和鲁棒性(信号噪声、状态偏差、初始误差和参数不确定性)方面都很有前途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft-sensor based on sliding modes for industrial raceway photobioreactors

Microalgae reactors provide an efficient and clean alternative for the production of biofuels, nutritional and cosmetic bioproducts, wastewater treatment, and mitigation of industrial gases to reduce greenhouse gas emissions. The main control objective in these systems is productivity optimisation. For this reason, real-time monitoring of key biological performance indicators affecting microalgae production such as microalgae growth rate, biomass concentration, dissolved oxygen, pH level or total inorganic carbon is crucial. However, there are no sufficiently robust solutions on the market to estimate or measure all of these variables, especially for open reactors on an industrial scale. This paper presents a new online state estimator, based on a robust sliding mode observer combined with a nonlinear dynamic model endowed with a minimum number of states to capture dynamics of key biological performance indicators. This soft-sensor has been verified with a realistic reactor model that has been experimentally tested. Simulations showed promising results in terms of accuracy (with mean values of the state estimation errors in the order of 10−4 g m−3 for the biomass concentration, 10−5 to 10−13 mol m−3 for the other states and deviations in the order of 10−4 g m−3 for the biomass concentration, 10−5 to 10−10 mol m−3 for the other states) and robustness with respect to signal noise, state deviations, initial errors and parametric uncertainty.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
An application oriented all-round intelligent weeding machine with enhanced YOLOv5 Characterising vibration patterns of winter jujube trees to optimise automated fruit harvesting UAV multispectral remote sensing for agriculture: A comparative study of radiometric correction methods under varying illumination conditions Effects of polyphenol-rich extracts and compounds on methane and ammonia emissions from pig slurry during 28-day incubation Optimising maize threshing process with temporal proximity soft actor-critic deep reinforcement learning algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1