{"title":"一种优化玉米免耕播种机连接部件参数的方法","authors":"Chen Xue, Li-Qing Chen, Ce Liu, Wei-Wei Wang","doi":"10.1016/j.biosystemseng.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>To suppress the influence of complex field path excitation on the seeding quality of a corn no-till planter, a method for optimising the parameters of connecting parts is proposed in this study. Firstly, a twelve degrees of freedom model of the whole tractor-planter is established, and the corresponding differential equations are solved for the vibration characteristics. Then the key parameters of vibration characteristics are determined by sensitivity analysis based on the Matlab/Simulink model. On this basis, the gray wolf optimisation algorithm is introduced to address the global optimal solutions of connecting part parameters. Finally, the effectiveness of the proposed method is verified through numerical simulations and field experiments. The simulation results indicate that compared with the results before the optimisation, the vibration accelerations of corn no-till planter in the vertical, roll and pitch directions are reduced by 15.8%, 14.3% and 16.4%, respectively. The field experiment results further verify the validity of the proposed method.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"245 ","pages":"Pages 177-189"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for optimising the parameters of connecting parts of a corn no-till planter\",\"authors\":\"Chen Xue, Li-Qing Chen, Ce Liu, Wei-Wei Wang\",\"doi\":\"10.1016/j.biosystemseng.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To suppress the influence of complex field path excitation on the seeding quality of a corn no-till planter, a method for optimising the parameters of connecting parts is proposed in this study. Firstly, a twelve degrees of freedom model of the whole tractor-planter is established, and the corresponding differential equations are solved for the vibration characteristics. Then the key parameters of vibration characteristics are determined by sensitivity analysis based on the Matlab/Simulink model. On this basis, the gray wolf optimisation algorithm is introduced to address the global optimal solutions of connecting part parameters. Finally, the effectiveness of the proposed method is verified through numerical simulations and field experiments. The simulation results indicate that compared with the results before the optimisation, the vibration accelerations of corn no-till planter in the vertical, roll and pitch directions are reduced by 15.8%, 14.3% and 16.4%, respectively. The field experiment results further verify the validity of the proposed method.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":\"245 \",\"pages\":\"Pages 177-189\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024001594\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001594","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
A method for optimising the parameters of connecting parts of a corn no-till planter
To suppress the influence of complex field path excitation on the seeding quality of a corn no-till planter, a method for optimising the parameters of connecting parts is proposed in this study. Firstly, a twelve degrees of freedom model of the whole tractor-planter is established, and the corresponding differential equations are solved for the vibration characteristics. Then the key parameters of vibration characteristics are determined by sensitivity analysis based on the Matlab/Simulink model. On this basis, the gray wolf optimisation algorithm is introduced to address the global optimal solutions of connecting part parameters. Finally, the effectiveness of the proposed method is verified through numerical simulations and field experiments. The simulation results indicate that compared with the results before the optimisation, the vibration accelerations of corn no-till planter in the vertical, roll and pitch directions are reduced by 15.8%, 14.3% and 16.4%, respectively. The field experiment results further verify the validity of the proposed method.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.