通过基于深度学习的偏好评估和多视角信息嵌入聚合模型实现多方利益相关者推荐系统

IF 7.4 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Processing & Management Pub Date : 2024-08-01 DOI:10.1016/j.ipm.2024.103862
Rahul Shrivastava, Dilip Singh Sisodia, Naresh Kumar Nagwani
{"title":"通过基于深度学习的偏好评估和多视角信息嵌入聚合模型实现多方利益相关者推荐系统","authors":"Rahul Shrivastava,&nbsp;Dilip Singh Sisodia,&nbsp;Naresh Kumar Nagwani","doi":"10.1016/j.ipm.2024.103862","DOIUrl":null,"url":null,"abstract":"<div><p>Learning the preferences of consumers, providers, and system stakeholders is a challenging problem in the Multi-Stakeholder Recommendation System (MSRS). Existing MSRS methods lack the ability to generate equitable recommendations and investigate implicit relationships between stakeholders and items. Hence, this study addresses this issue by proposing a multi-stakeholder preference learning-based recommendation model that exploits information from multiple views to evaluate stakeholders' preferences. The proposed model learns consumer preferences using users' ratings and reviews of an item, provider preferences with provider utility, and provider-item interaction. Furthermore, the proposed model learns the system-level preference of promoting long-tail items through the probabilistic evaluation of stakeholders' interest in popular and unpopular items. Finally, this study develops a multi-stakeholder, multi-view deep neural network model to aggregate stakeholders' preferences and deliver equitable recommendations. This work utilizes benchmark Movie Lens (ML) 25M, ML-100K, ML-1M, and TripAdvisor datasets to validate and compare the proposed model's performance with other baseline methods using standard evaluation metrics for each stakeholder. Examining the precision metrics, the proposed model attains the minimum enhancement of 7.91%, 18.24%, 10.72%, and 20.12% across the ML-25M, ML-100K, ML-1M, and TripAdvisor datasets. Further concerning the exposure, hit, and reach metrics, the model exhibits a substantial minimum improvement of 19.12%, 14.73%, 5.37%, and 28.46% over the ML-25M, ML-100K, ML-1M, and TripAdvisor datasets. Finally, the proposed model excels in promoting long-tail items and enhancing the cumulative utility gain of the stakeholders, surpassing the baseline methods.</p></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-stakeholder recommendation system through deep learning-based preference evaluation and aggregation model with multi-view information embedding\",\"authors\":\"Rahul Shrivastava,&nbsp;Dilip Singh Sisodia,&nbsp;Naresh Kumar Nagwani\",\"doi\":\"10.1016/j.ipm.2024.103862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Learning the preferences of consumers, providers, and system stakeholders is a challenging problem in the Multi-Stakeholder Recommendation System (MSRS). Existing MSRS methods lack the ability to generate equitable recommendations and investigate implicit relationships between stakeholders and items. Hence, this study addresses this issue by proposing a multi-stakeholder preference learning-based recommendation model that exploits information from multiple views to evaluate stakeholders' preferences. The proposed model learns consumer preferences using users' ratings and reviews of an item, provider preferences with provider utility, and provider-item interaction. Furthermore, the proposed model learns the system-level preference of promoting long-tail items through the probabilistic evaluation of stakeholders' interest in popular and unpopular items. Finally, this study develops a multi-stakeholder, multi-view deep neural network model to aggregate stakeholders' preferences and deliver equitable recommendations. This work utilizes benchmark Movie Lens (ML) 25M, ML-100K, ML-1M, and TripAdvisor datasets to validate and compare the proposed model's performance with other baseline methods using standard evaluation metrics for each stakeholder. Examining the precision metrics, the proposed model attains the minimum enhancement of 7.91%, 18.24%, 10.72%, and 20.12% across the ML-25M, ML-100K, ML-1M, and TripAdvisor datasets. Further concerning the exposure, hit, and reach metrics, the model exhibits a substantial minimum improvement of 19.12%, 14.73%, 5.37%, and 28.46% over the ML-25M, ML-100K, ML-1M, and TripAdvisor datasets. Finally, the proposed model excels in promoting long-tail items and enhancing the cumulative utility gain of the stakeholders, surpassing the baseline methods.</p></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324002218\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324002218","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在多利益相关者推荐系统(MSRS)中,了解消费者、供应商和系统利益相关者的偏好是一个具有挑战性的问题。现有的 MSRS 方法缺乏生成公平推荐和调查利益相关者与项目之间隐含关系的能力。因此,本研究针对这一问题,提出了一种基于多利益相关者偏好学习的推荐模型,该模型利用来自多个视图的信息来评估利益相关者的偏好。该模型利用用户对物品的评分和评论来学习消费者的偏好,利用提供者的效用和提供者与物品之间的互动来学习提供者的偏好。此外,所提出的模型还通过对利益相关者对受欢迎和不受欢迎的项目的兴趣进行概率评估,来学习系统层面对推广长尾项目的偏好。最后,本研究开发了一个多利益相关者、多视角的深度神经网络模型,以汇总利益相关者的偏好并提供公平的推荐。本研究利用基准 Movie Lens (ML) 25M、ML-100K、ML-1M 和 TripAdvisor 数据集,使用针对各利益相关者的标准评估指标,验证和比较了所提出模型的性能与其他基准方法。在精确度指标方面,建议的模型在 ML-25M、ML-100K、ML-1M 和 TripAdvisor 数据集上分别达到了 7.91%、18.24%、10.72% 和 20.12% 的最低增强率。此外,在曝光率、点击率和到达率指标方面,该模型在 ML-25M、ML-100K、ML-1M 和 TripAdvisor 数据集上分别实现了 19.12%、14.73%、5.37% 和 28.46% 的大幅提升。最后,建议的模型在推广长尾项目和提高利益相关者的累积效用收益方面表现出色,超过了基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-stakeholder recommendation system through deep learning-based preference evaluation and aggregation model with multi-view information embedding

Learning the preferences of consumers, providers, and system stakeholders is a challenging problem in the Multi-Stakeholder Recommendation System (MSRS). Existing MSRS methods lack the ability to generate equitable recommendations and investigate implicit relationships between stakeholders and items. Hence, this study addresses this issue by proposing a multi-stakeholder preference learning-based recommendation model that exploits information from multiple views to evaluate stakeholders' preferences. The proposed model learns consumer preferences using users' ratings and reviews of an item, provider preferences with provider utility, and provider-item interaction. Furthermore, the proposed model learns the system-level preference of promoting long-tail items through the probabilistic evaluation of stakeholders' interest in popular and unpopular items. Finally, this study develops a multi-stakeholder, multi-view deep neural network model to aggregate stakeholders' preferences and deliver equitable recommendations. This work utilizes benchmark Movie Lens (ML) 25M, ML-100K, ML-1M, and TripAdvisor datasets to validate and compare the proposed model's performance with other baseline methods using standard evaluation metrics for each stakeholder. Examining the precision metrics, the proposed model attains the minimum enhancement of 7.91%, 18.24%, 10.72%, and 20.12% across the ML-25M, ML-100K, ML-1M, and TripAdvisor datasets. Further concerning the exposure, hit, and reach metrics, the model exhibits a substantial minimum improvement of 19.12%, 14.73%, 5.37%, and 28.46% over the ML-25M, ML-100K, ML-1M, and TripAdvisor datasets. Finally, the proposed model excels in promoting long-tail items and enhancing the cumulative utility gain of the stakeholders, surpassing the baseline methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
期刊最新文献
ME3A: A Multimodal Entity Entailment framework for multimodal Entity Alignment Hierarchical multi-label text classification of tourism resources using a label-aware dual graph attention network Impact of economic and socio-political risk factors on sovereign credit ratings Higher-order structure based node importance evaluation in directed networks Membership inference attacks via spatial projection-based relative information loss in MLaaS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1