{"title":"肽脂化和缩短优化了两亲性聚赖氨酸-聚苯丙氨酸八肽的抗菌、抗生物膜和膜溶解作用","authors":"","doi":"10.1016/j.crbiot.2024.100240","DOIUrl":null,"url":null,"abstract":"<div><p>The demand for broad-spectrum antibacterial agents continues with increasing rates of resistance of microbial pathogens to traditional antibiotics. Peptides and lipopeptides are gaining traction as promising novel, class-reference antibiotics for tackling difficult-to-treat infections caused by multi-drug resistant bacteria. To identify novel candidates and expand treatment options in clinical settings, we explored the <em>in vitro</em> antibacterial potential and mode of action of a short octapeptide combining a cationic block of four lysines and a highly hydrophobic segment of four phenylalanines (K4F4), and two K4F4-inspired lipopeptides (Palmitoyl-K4F4 and K4-NH-Palmitoyl). Preliminary AI-based screening had revealed the antimicrobial potential of the K4F4 peptide coupled with limited haemolytic activity. Broth dilution and haemolytic assays have confirmed these <em>in silico</em> predictions. Overall, our lipidated peptides were more active at lower MIC values compared to non-lipidated species, indicating the beneficial impact of tailing lipidation on design of peptide-based antimicrobials. An integrated view of the membrane-active mechanism of these novel therapeutic templates was obtained using a combination of flow cytometry, fluorescence microscopy and dye-based permeabilization assays. K4F4 and its lipidated derivatives act via a fast-disrupting mechanism without inducing bacterial resistance mechanisms in a long-term exposure assay. A K4F4-inspired lipopeptide together with its shorter version (K4-NH-Palmitoyl), were more stable in environments closer emulating physiological conditions, showing a higher antibacterial response in physiological salts and serum than their parent peptide. Our findings reveal the antibacterial and antibiofilm potential of a novel polylysine-polyphenyalanine peptide and highlight the significant contribution of lipidation and shortening as molecular engineering strategies to improve and guide the future design of next-generation membrane-targeting antibiotics.</p></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590262824000662/pdfft?md5=fddf19f74fab0f84efe1a00be76e50af&pid=1-s2.0-S2590262824000662-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Peptide lipidation and shortening optimises antibacterial, antibiofilm and membranolytic actions of an amphiphilic polylysine-polyphenyalanine octapeptide\",\"authors\":\"\",\"doi\":\"10.1016/j.crbiot.2024.100240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The demand for broad-spectrum antibacterial agents continues with increasing rates of resistance of microbial pathogens to traditional antibiotics. Peptides and lipopeptides are gaining traction as promising novel, class-reference antibiotics for tackling difficult-to-treat infections caused by multi-drug resistant bacteria. To identify novel candidates and expand treatment options in clinical settings, we explored the <em>in vitro</em> antibacterial potential and mode of action of a short octapeptide combining a cationic block of four lysines and a highly hydrophobic segment of four phenylalanines (K4F4), and two K4F4-inspired lipopeptides (Palmitoyl-K4F4 and K4-NH-Palmitoyl). Preliminary AI-based screening had revealed the antimicrobial potential of the K4F4 peptide coupled with limited haemolytic activity. Broth dilution and haemolytic assays have confirmed these <em>in silico</em> predictions. Overall, our lipidated peptides were more active at lower MIC values compared to non-lipidated species, indicating the beneficial impact of tailing lipidation on design of peptide-based antimicrobials. An integrated view of the membrane-active mechanism of these novel therapeutic templates was obtained using a combination of flow cytometry, fluorescence microscopy and dye-based permeabilization assays. K4F4 and its lipidated derivatives act via a fast-disrupting mechanism without inducing bacterial resistance mechanisms in a long-term exposure assay. A K4F4-inspired lipopeptide together with its shorter version (K4-NH-Palmitoyl), were more stable in environments closer emulating physiological conditions, showing a higher antibacterial response in physiological salts and serum than their parent peptide. Our findings reveal the antibacterial and antibiofilm potential of a novel polylysine-polyphenyalanine peptide and highlight the significant contribution of lipidation and shortening as molecular engineering strategies to improve and guide the future design of next-generation membrane-targeting antibiotics.</p></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000662/pdfft?md5=fddf19f74fab0f84efe1a00be76e50af&pid=1-s2.0-S2590262824000662-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Peptide lipidation and shortening optimises antibacterial, antibiofilm and membranolytic actions of an amphiphilic polylysine-polyphenyalanine octapeptide
The demand for broad-spectrum antibacterial agents continues with increasing rates of resistance of microbial pathogens to traditional antibiotics. Peptides and lipopeptides are gaining traction as promising novel, class-reference antibiotics for tackling difficult-to-treat infections caused by multi-drug resistant bacteria. To identify novel candidates and expand treatment options in clinical settings, we explored the in vitro antibacterial potential and mode of action of a short octapeptide combining a cationic block of four lysines and a highly hydrophobic segment of four phenylalanines (K4F4), and two K4F4-inspired lipopeptides (Palmitoyl-K4F4 and K4-NH-Palmitoyl). Preliminary AI-based screening had revealed the antimicrobial potential of the K4F4 peptide coupled with limited haemolytic activity. Broth dilution and haemolytic assays have confirmed these in silico predictions. Overall, our lipidated peptides were more active at lower MIC values compared to non-lipidated species, indicating the beneficial impact of tailing lipidation on design of peptide-based antimicrobials. An integrated view of the membrane-active mechanism of these novel therapeutic templates was obtained using a combination of flow cytometry, fluorescence microscopy and dye-based permeabilization assays. K4F4 and its lipidated derivatives act via a fast-disrupting mechanism without inducing bacterial resistance mechanisms in a long-term exposure assay. A K4F4-inspired lipopeptide together with its shorter version (K4-NH-Palmitoyl), were more stable in environments closer emulating physiological conditions, showing a higher antibacterial response in physiological salts and serum than their parent peptide. Our findings reveal the antibacterial and antibiofilm potential of a novel polylysine-polyphenyalanine peptide and highlight the significant contribution of lipidation and shortening as molecular engineering strategies to improve and guide the future design of next-generation membrane-targeting antibiotics.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.