溶剂对咪喹莫特激发态光物理的影响:DFT/TD-DFT 和光谱学研究

IF 4.1 3区 化学 Q2 CHEMISTRY, PHYSICAL Journal of Photochemistry and Photobiology A-chemistry Pub Date : 2024-08-03 DOI:10.1016/j.jphotochem.2024.115928
{"title":"溶剂对咪喹莫特激发态光物理的影响:DFT/TD-DFT 和光谱学研究","authors":"","doi":"10.1016/j.jphotochem.2024.115928","DOIUrl":null,"url":null,"abstract":"<div><p>Solvation plays an important role in chemistry and biology. The role of the solvent is crucial in any chemical processes such as tautomerization that controls the structure and function of biomolecules. The current study aims to explore how different solvent medium affects the tautomeric forms of an antitumor drug, Imiquimod (IMQ). We have used several spectroscopical methods, including UV–Vis absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy, and quantum mechanical (QM) calculations. Our results revealed that solvent, indeed, plays a significant role in the modulation of the photophysics of the drug. IMQ has three emission bands in protic and aprotic solvents and two bands in non-polar medium associated with different forms of the drug. Using time-resolved technique, and comparing with the predicted lifetimes from QM calculations, we succeed to assign these three forms as cation, tautomer and neutral of IMQ with 1.6 ns, 2.0 ns and 4.0 ns lifetime values, respectively. Since IMQ is a nucleobase analogue and one of the most effective medications for skin tumors; these findings about which specie of IMQ is present in a given medium, and beyond, how the medium alters the photophysics of the molecule may provide deeper insights into its structure and function.</p></div>","PeriodicalId":16782,"journal":{"name":"Journal of Photochemistry and Photobiology A-chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvent effect on the excited state photophysics of Imiquimod: A DFT/TD-DFT and spectroscopic study\",\"authors\":\"\",\"doi\":\"10.1016/j.jphotochem.2024.115928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solvation plays an important role in chemistry and biology. The role of the solvent is crucial in any chemical processes such as tautomerization that controls the structure and function of biomolecules. The current study aims to explore how different solvent medium affects the tautomeric forms of an antitumor drug, Imiquimod (IMQ). We have used several spectroscopical methods, including UV–Vis absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy, and quantum mechanical (QM) calculations. Our results revealed that solvent, indeed, plays a significant role in the modulation of the photophysics of the drug. IMQ has three emission bands in protic and aprotic solvents and two bands in non-polar medium associated with different forms of the drug. Using time-resolved technique, and comparing with the predicted lifetimes from QM calculations, we succeed to assign these three forms as cation, tautomer and neutral of IMQ with 1.6 ns, 2.0 ns and 4.0 ns lifetime values, respectively. Since IMQ is a nucleobase analogue and one of the most effective medications for skin tumors; these findings about which specie of IMQ is present in a given medium, and beyond, how the medium alters the photophysics of the molecule may provide deeper insights into its structure and function.</p></div>\",\"PeriodicalId\":16782,\"journal\":{\"name\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photochemistry and Photobiology A-chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1010603024004726\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photochemistry and Photobiology A-chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1010603024004726","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

溶解在化学和生物学中发挥着重要作用。溶剂在任何化学过程中都起着至关重要的作用,如控制生物大分子结构和功能的同分异构过程。本研究旨在探讨不同溶剂介质如何影响抗肿瘤药物咪喹莫特(IMQ)的同分异构形式。我们采用了多种光谱学方法,包括紫外可见吸收光谱、稳态和时间分辨荧光光谱以及量子力学(QM)计算。我们的研究结果表明,溶剂在药物的光物理调制过程中确实发挥了重要作用。IMQ 在质子和非质子溶剂中有三个发射带,在非极性介质中有两个发射带,这与药物的不同形态有关。利用时间分辨技术,并与根据质量管理计算得出的预测寿命进行比较,我们成功地将这三种形式分别归为 IMQ 的阳离子、同系物和中性,其寿命值分别为 1.6 ns、2.0 ns 和 4.0 ns。由于 IMQ 是一种核碱基类似物,也是治疗皮肤肿瘤最有效的药物之一;这些关于 IMQ 在特定介质中的存在形式的发现,以及介质如何改变分子光物理学的发现,可能会让我们对其结构和功能有更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solvent effect on the excited state photophysics of Imiquimod: A DFT/TD-DFT and spectroscopic study

Solvation plays an important role in chemistry and biology. The role of the solvent is crucial in any chemical processes such as tautomerization that controls the structure and function of biomolecules. The current study aims to explore how different solvent medium affects the tautomeric forms of an antitumor drug, Imiquimod (IMQ). We have used several spectroscopical methods, including UV–Vis absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy, and quantum mechanical (QM) calculations. Our results revealed that solvent, indeed, plays a significant role in the modulation of the photophysics of the drug. IMQ has three emission bands in protic and aprotic solvents and two bands in non-polar medium associated with different forms of the drug. Using time-resolved technique, and comparing with the predicted lifetimes from QM calculations, we succeed to assign these three forms as cation, tautomer and neutral of IMQ with 1.6 ns, 2.0 ns and 4.0 ns lifetime values, respectively. Since IMQ is a nucleobase analogue and one of the most effective medications for skin tumors; these findings about which specie of IMQ is present in a given medium, and beyond, how the medium alters the photophysics of the molecule may provide deeper insights into its structure and function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
580
审稿时长
48 days
期刊介绍: JPPA publishes the results of fundamental studies on all aspects of chemical phenomena induced by interactions between light and molecules/matter of all kinds. All systems capable of being described at the molecular or integrated multimolecular level are appropriate for the journal. This includes all molecular chemical species as well as biomolecular, supramolecular, polymer and other macromolecular systems, as well as solid state photochemistry. In addition, the journal publishes studies of semiconductor and other photoactive organic and inorganic materials, photocatalysis (organic, inorganic, supramolecular and superconductor). The scope includes condensed and gas phase photochemistry, as well as synchrotron radiation chemistry. A broad range of processes and techniques in photochemistry are covered such as light induced energy, electron and proton transfer; nonlinear photochemical behavior; mechanistic investigation of photochemical reactions and identification of the products of photochemical reactions; quantum yield determinations and measurements of rate constants for primary and secondary photochemical processes; steady-state and time-resolved emission, ultrafast spectroscopic methods, single molecule spectroscopy, time resolved X-ray diffraction, luminescence microscopy, and scattering spectroscopy applied to photochemistry. Papers in emerging and applied areas such as luminescent sensors, electroluminescence, solar energy conversion, atmospheric photochemistry, environmental remediation, and related photocatalytic chemistry are also welcome.
期刊最新文献
Editorial Board Photoelectrodegradation and sensing of pentachlorophenol using In and Mn metalated porphyrins in the presence of TiO2 nanoparticles Three multifunctional difluoroboron fluorescent dyes with five member N-heterocyclic ring for mechanofluorochromic behaviors, the ink-free writing and latent fingerprints imaging The role of process parameters on photooxidative degradation of 2,4-D herbicide using TiO2 nanoparticles: Kinetic and mechanistic study Insight into solvation-regulated emission: Dissecting the switchable ESIPT/ESPT mechanisms in HNT molecule
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1