{"title":"时间不会证明一切:隐私保护轨迹发布的时间方法","authors":"","doi":"10.1016/j.compenvurbsys.2024.102154","DOIUrl":null,"url":null,"abstract":"<div><p>Fine-granular spatio-temporal trajectories, i.e., time-stamped sequences of locations, play a pivotal role in transport and urban analytics. However, sharing or publishing trajectory data of individuals raises concerns about location privacy given the potential for re-identification and unintentional dissemination of sensitive information. A key enabler for privacy breaches is precise temporal information. Thus, this study investigates the privacy-preserving capabilities of third-party free mechanisms protecting trajectories by exclusively targeting the temporal dimension. We compare a deterministic and a stochastic technique for shifting trajectories in time by adding an offset to each timestamp. The stochastic approach leverages a generalized version of differential privacy to render an individual's presence at any event plausibly deniable, obstructing re-identification attacks based on spatio-temporal side knowledge. Furthermore, we present a Markov chain-based speed perturbation technique that preserves dynamic patterns while obfuscating travel times and motion attributes. Using simulated re-identification attacks, we analyze privacy gains and contrast them with the utility loss. The results demonstrate a favorable utility-to-privacy ratio of the temporal techniques compared to established spatial and spatio-temporal approaches. This underlines the importance of accounting for temporal aspects in addition to spatial considerations in privacy-preserving trajectory publishing.</p></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0198971524000838/pdfft?md5=16cb423999940008fd0bf6d4fdc5e586&pid=1-s2.0-S0198971524000838-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Time will not tell: Temporal approaches for privacy-preserving trajectory publishing\",\"authors\":\"\",\"doi\":\"10.1016/j.compenvurbsys.2024.102154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fine-granular spatio-temporal trajectories, i.e., time-stamped sequences of locations, play a pivotal role in transport and urban analytics. However, sharing or publishing trajectory data of individuals raises concerns about location privacy given the potential for re-identification and unintentional dissemination of sensitive information. A key enabler for privacy breaches is precise temporal information. Thus, this study investigates the privacy-preserving capabilities of third-party free mechanisms protecting trajectories by exclusively targeting the temporal dimension. We compare a deterministic and a stochastic technique for shifting trajectories in time by adding an offset to each timestamp. The stochastic approach leverages a generalized version of differential privacy to render an individual's presence at any event plausibly deniable, obstructing re-identification attacks based on spatio-temporal side knowledge. Furthermore, we present a Markov chain-based speed perturbation technique that preserves dynamic patterns while obfuscating travel times and motion attributes. Using simulated re-identification attacks, we analyze privacy gains and contrast them with the utility loss. The results demonstrate a favorable utility-to-privacy ratio of the temporal techniques compared to established spatial and spatio-temporal approaches. This underlines the importance of accounting for temporal aspects in addition to spatial considerations in privacy-preserving trajectory publishing.</p></div>\",\"PeriodicalId\":48241,\"journal\":{\"name\":\"Computers Environment and Urban Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000838/pdfft?md5=16cb423999940008fd0bf6d4fdc5e586&pid=1-s2.0-S0198971524000838-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers Environment and Urban Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0198971524000838\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524000838","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
Time will not tell: Temporal approaches for privacy-preserving trajectory publishing
Fine-granular spatio-temporal trajectories, i.e., time-stamped sequences of locations, play a pivotal role in transport and urban analytics. However, sharing or publishing trajectory data of individuals raises concerns about location privacy given the potential for re-identification and unintentional dissemination of sensitive information. A key enabler for privacy breaches is precise temporal information. Thus, this study investigates the privacy-preserving capabilities of third-party free mechanisms protecting trajectories by exclusively targeting the temporal dimension. We compare a deterministic and a stochastic technique for shifting trajectories in time by adding an offset to each timestamp. The stochastic approach leverages a generalized version of differential privacy to render an individual's presence at any event plausibly deniable, obstructing re-identification attacks based on spatio-temporal side knowledge. Furthermore, we present a Markov chain-based speed perturbation technique that preserves dynamic patterns while obfuscating travel times and motion attributes. Using simulated re-identification attacks, we analyze privacy gains and contrast them with the utility loss. The results demonstrate a favorable utility-to-privacy ratio of the temporal techniques compared to established spatial and spatio-temporal approaches. This underlines the importance of accounting for temporal aspects in addition to spatial considerations in privacy-preserving trajectory publishing.
期刊介绍:
Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.