{"title":"无机化合物中的二价锰(Mn2+,3d5)电荷转移能和真空参考结合能","authors":"J.J. Schuyt , G.V.M. Williams , S.V. Chong","doi":"10.1016/j.omx.2024.100345","DOIUrl":null,"url":null,"abstract":"<div><p>Ongoing efforts to develop a predictive model governing the host-referred binding energies (HRBEs) and vacuum-referred binding energies (VRBEs) of transition metal dopants in inorganic host compounds are stymied by a lack of cross-compound data sets that capture transitions between the dopant ions and the valence and conduction bands of the hosts. Herein, we have compiled data consistent with Mn<sup>2+</sup> charge transfer processes in 53 different compounds, spanning fluorides, oxides, chlorides, bromides, and nitrides. By assigning these transitions to Mn<sup>2+</sup> → conduction band metal-to-metal charge transfer and combining these energies with the binding energies of electrons in the valence and conduction bands of the various hosts, we have calculated the HRBEs and VRBEs of the Mn<sup>2+</sup> ion across a range of compounds. We show that variations in the Mn<sup>2+</sup> VRBE are small relative to the variations in the VRBE of the valence and conduction bands, which manifests an approximately linear relationship between the Mn<sup>2+</sup> HRBE and the bandgap energy of host compounds. We investigated the relationship between the Mn<sup>2+</sup> VRBE and the various structures of the host compounds and showed that the chemical shift experienced by the Mn<sup>2+</sup> ion depends on the electronegativity of the ligand, the Mn<sup>2+</sup> coordination, and the Mn-ligand bond lengths in a predictable manner.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"23 ","pages":"Article 100345"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000573/pdfft?md5=6e277a24a7cab96480d2192122ef771c&pid=1-s2.0-S2590147824000573-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Divalent manganese (Mn2+, 3d5) charge transfer energies and vacuum-referred binding energies in inorganic compounds\",\"authors\":\"J.J. Schuyt , G.V.M. Williams , S.V. Chong\",\"doi\":\"10.1016/j.omx.2024.100345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ongoing efforts to develop a predictive model governing the host-referred binding energies (HRBEs) and vacuum-referred binding energies (VRBEs) of transition metal dopants in inorganic host compounds are stymied by a lack of cross-compound data sets that capture transitions between the dopant ions and the valence and conduction bands of the hosts. Herein, we have compiled data consistent with Mn<sup>2+</sup> charge transfer processes in 53 different compounds, spanning fluorides, oxides, chlorides, bromides, and nitrides. By assigning these transitions to Mn<sup>2+</sup> → conduction band metal-to-metal charge transfer and combining these energies with the binding energies of electrons in the valence and conduction bands of the various hosts, we have calculated the HRBEs and VRBEs of the Mn<sup>2+</sup> ion across a range of compounds. We show that variations in the Mn<sup>2+</sup> VRBE are small relative to the variations in the VRBE of the valence and conduction bands, which manifests an approximately linear relationship between the Mn<sup>2+</sup> HRBE and the bandgap energy of host compounds. We investigated the relationship between the Mn<sup>2+</sup> VRBE and the various structures of the host compounds and showed that the chemical shift experienced by the Mn<sup>2+</sup> ion depends on the electronegativity of the ligand, the Mn<sup>2+</sup> coordination, and the Mn-ligand bond lengths in a predictable manner.</p></div>\",\"PeriodicalId\":52192,\"journal\":{\"name\":\"Optical Materials: X\",\"volume\":\"23 \",\"pages\":\"Article 100345\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590147824000573/pdfft?md5=6e277a24a7cab96480d2192122ef771c&pid=1-s2.0-S2590147824000573-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590147824000573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147824000573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Divalent manganese (Mn2+, 3d5) charge transfer energies and vacuum-referred binding energies in inorganic compounds
Ongoing efforts to develop a predictive model governing the host-referred binding energies (HRBEs) and vacuum-referred binding energies (VRBEs) of transition metal dopants in inorganic host compounds are stymied by a lack of cross-compound data sets that capture transitions between the dopant ions and the valence and conduction bands of the hosts. Herein, we have compiled data consistent with Mn2+ charge transfer processes in 53 different compounds, spanning fluorides, oxides, chlorides, bromides, and nitrides. By assigning these transitions to Mn2+ → conduction band metal-to-metal charge transfer and combining these energies with the binding energies of electrons in the valence and conduction bands of the various hosts, we have calculated the HRBEs and VRBEs of the Mn2+ ion across a range of compounds. We show that variations in the Mn2+ VRBE are small relative to the variations in the VRBE of the valence and conduction bands, which manifests an approximately linear relationship between the Mn2+ HRBE and the bandgap energy of host compounds. We investigated the relationship between the Mn2+ VRBE and the various structures of the host compounds and showed that the chemical shift experienced by the Mn2+ ion depends on the electronegativity of the ligand, the Mn2+ coordination, and the Mn-ligand bond lengths in a predictable manner.