{"title":"将拉平多火山泥中的硅胶开发成基于甲基橙的荧光指纹粉末","authors":"Qurrota A'yuni , Alfa Akustia Widati , Muchammad Tamyiz , Hartati Hartati , Rahma Yunia Utami , Mohamad Afiq Mohamed Huri , Axel Dimaz Sanusi Pasaribu","doi":"10.1016/j.sajce.2024.08.002","DOIUrl":null,"url":null,"abstract":"<div><p>Fingerprint powder remains one of the most effective techniques for identifying individuals from their latent fingerprints. Visualizing latent fingerprints requires powder with high color contrast and strong adhesive to be easily applied on various substrates. The utilization of silica gel extracted from local materials of Lapindo volcanic mud can be applied for fluorescent fingerprint powder based on methyl orange. The powder was synthesized by the sol-gel method, followed by the impregnation of methyl orange as a dye with varying loads. The powders exhibit an amorphous structure and nanoparticle size with an average particle diameter of 80.93 nm by spherical morphology interconnected to form agglomerations. The powder contains silanol, siloxane, azo, and carboxylate functional groups derived from its precursors. The dusting method proves the performance of fluorescent fingerprint powder on porous and non-porous substrates hereafter observed under white light and UV light. The powder containing 0.05 gs of methyl orange per gram of silica gel is the most effective in revealing fingerprint patterns on non-porous surfaces. It has mesoporous properties with a specific surface area of 7.95 m<sup>2</sup>g<sup>−1</sup> and a pore diameter of 23.14 nm. SiMO retained its full capability after two years of storage, indicating it is a great choice for forensic investigations.</p></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"50 ","pages":"Pages 143-151"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S102691852400091X/pdfft?md5=c00d6a3569aecdfc50f6670bfdcb28d2&pid=1-s2.0-S102691852400091X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of silica gel from Lapindo volcanic mud as fluorescent fingerprint powder based on methyl orange\",\"authors\":\"Qurrota A'yuni , Alfa Akustia Widati , Muchammad Tamyiz , Hartati Hartati , Rahma Yunia Utami , Mohamad Afiq Mohamed Huri , Axel Dimaz Sanusi Pasaribu\",\"doi\":\"10.1016/j.sajce.2024.08.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fingerprint powder remains one of the most effective techniques for identifying individuals from their latent fingerprints. Visualizing latent fingerprints requires powder with high color contrast and strong adhesive to be easily applied on various substrates. The utilization of silica gel extracted from local materials of Lapindo volcanic mud can be applied for fluorescent fingerprint powder based on methyl orange. The powder was synthesized by the sol-gel method, followed by the impregnation of methyl orange as a dye with varying loads. The powders exhibit an amorphous structure and nanoparticle size with an average particle diameter of 80.93 nm by spherical morphology interconnected to form agglomerations. The powder contains silanol, siloxane, azo, and carboxylate functional groups derived from its precursors. The dusting method proves the performance of fluorescent fingerprint powder on porous and non-porous substrates hereafter observed under white light and UV light. The powder containing 0.05 gs of methyl orange per gram of silica gel is the most effective in revealing fingerprint patterns on non-porous surfaces. It has mesoporous properties with a specific surface area of 7.95 m<sup>2</sup>g<sup>−1</sup> and a pore diameter of 23.14 nm. SiMO retained its full capability after two years of storage, indicating it is a great choice for forensic investigations.</p></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"50 \",\"pages\":\"Pages 143-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S102691852400091X/pdfft?md5=c00d6a3569aecdfc50f6670bfdcb28d2&pid=1-s2.0-S102691852400091X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S102691852400091X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S102691852400091X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Development of silica gel from Lapindo volcanic mud as fluorescent fingerprint powder based on methyl orange
Fingerprint powder remains one of the most effective techniques for identifying individuals from their latent fingerprints. Visualizing latent fingerprints requires powder with high color contrast and strong adhesive to be easily applied on various substrates. The utilization of silica gel extracted from local materials of Lapindo volcanic mud can be applied for fluorescent fingerprint powder based on methyl orange. The powder was synthesized by the sol-gel method, followed by the impregnation of methyl orange as a dye with varying loads. The powders exhibit an amorphous structure and nanoparticle size with an average particle diameter of 80.93 nm by spherical morphology interconnected to form agglomerations. The powder contains silanol, siloxane, azo, and carboxylate functional groups derived from its precursors. The dusting method proves the performance of fluorescent fingerprint powder on porous and non-porous substrates hereafter observed under white light and UV light. The powder containing 0.05 gs of methyl orange per gram of silica gel is the most effective in revealing fingerprint patterns on non-porous surfaces. It has mesoporous properties with a specific surface area of 7.95 m2g−1 and a pore diameter of 23.14 nm. SiMO retained its full capability after two years of storage, indicating it is a great choice for forensic investigations.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.