近红外响应式 CO/H2S 双气体纳米发电机的 "一石三鸟 "策略,用于高效治疗骨质疏松症

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL Materials Today Bio Pub Date : 2024-08-06 DOI:10.1016/j.mtbio.2024.101179
{"title":"近红外响应式 CO/H2S 双气体纳米发电机的 \"一石三鸟 \"策略,用于高效治疗骨质疏松症","authors":"","doi":"10.1016/j.mtbio.2024.101179","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoporosis (OP), the most prevalent bone degenerative disease, has become a significant public health challenge globally. Current therapies primarily target inhibiting osteoclast activity or stimulating osteoblast activation, but their effectiveness remains suboptimal. This paper introduced a “three birds, one stone” therapeutic approach for osteoporosis, employing upconversion nanoparticles (UCNPs) to create a dual-gas storage nanoplatform (UZPA-CP) targeting bone tissues, capable of concurrently generating carbon monoxide (CO) and hydrogen sulfide (H<sub>2</sub>S). Through the precise modulation of 808 nm near-infrared (NIR) light, the platform could effectively control the release of CO and H<sub>2</sub>S in the OP microenvironment, and realize the effective combination of promoting osteogenesis, inhibiting osteoclast activity, and improving the immune microenvironment to achieve the therapeutic effect of OP. High-throughput sequencing results further confirmed the remarkable effectiveness of the nanoplatform in inhibiting apoptosis, modulating inflammatory response, inhibiting osteoclast differentiation and regulating multiple immune signaling pathways. The gas storage nanoplatform not only optimized the OP microenvironment with the assistance of NIR, but also restored the balance between osteoblasts and osteoclasts. This comprehensive therapeutic strategy focused on improving the bone microenvironment, promoting osteogenesis and inhibiting osteoclast activity provides an ideal new solution for the treatment of metabolic bone diseases.</p></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590006424002400/pdfft?md5=7b5331cc12b8d3ef7b4a10ca31f88cf6&pid=1-s2.0-S2590006424002400-main.pdf","citationCount":"0","resultStr":"{\"title\":\"“Three birds, one stone” strategy of NIR-responsive CO/H2S dual-gas Nanogenerator for efficient treatment of osteoporosis\",\"authors\":\"\",\"doi\":\"10.1016/j.mtbio.2024.101179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osteoporosis (OP), the most prevalent bone degenerative disease, has become a significant public health challenge globally. Current therapies primarily target inhibiting osteoclast activity or stimulating osteoblast activation, but their effectiveness remains suboptimal. This paper introduced a “three birds, one stone” therapeutic approach for osteoporosis, employing upconversion nanoparticles (UCNPs) to create a dual-gas storage nanoplatform (UZPA-CP) targeting bone tissues, capable of concurrently generating carbon monoxide (CO) and hydrogen sulfide (H<sub>2</sub>S). Through the precise modulation of 808 nm near-infrared (NIR) light, the platform could effectively control the release of CO and H<sub>2</sub>S in the OP microenvironment, and realize the effective combination of promoting osteogenesis, inhibiting osteoclast activity, and improving the immune microenvironment to achieve the therapeutic effect of OP. High-throughput sequencing results further confirmed the remarkable effectiveness of the nanoplatform in inhibiting apoptosis, modulating inflammatory response, inhibiting osteoclast differentiation and regulating multiple immune signaling pathways. The gas storage nanoplatform not only optimized the OP microenvironment with the assistance of NIR, but also restored the balance between osteoblasts and osteoclasts. This comprehensive therapeutic strategy focused on improving the bone microenvironment, promoting osteogenesis and inhibiting osteoclast activity provides an ideal new solution for the treatment of metabolic bone diseases.</p></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590006424002400/pdfft?md5=7b5331cc12b8d3ef7b4a10ca31f88cf6&pid=1-s2.0-S2590006424002400-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424002400\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424002400","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

骨质疏松症(OP)是最普遍的骨退行性疾病,已成为全球公共卫生面临的重大挑战。目前的疗法主要以抑制破骨细胞活性或刺激成骨细胞活化为目标,但效果仍不理想。本文介绍了一种 "一石三鸟 "的骨质疏松症治疗方法,即利用上转换纳米粒子(UCNPs)创建一种针对骨组织的双气体存储纳米平台(UZPA-CP),能够同时产生一氧化碳(CO)和硫化氢(H2S)。通过对808 nm近红外光的精确调控,该平台可有效控制OP微环境中CO和H2S的释放,实现促进成骨、抑制破骨细胞活性和改善免疫微环境的有效结合,达到OP的治疗效果。高通量测序结果进一步证实了该纳米平台在抑制细胞凋亡、调节炎症反应、抑制破骨细胞分化和调控多种免疫信号通路方面的显著效果。储气纳米平台不仅在近红外的帮助下优化了 OP 的微环境,还恢复了成骨细胞和破骨细胞之间的平衡。这种以改善骨微环境、促进成骨和抑制破骨细胞活性为重点的综合治疗策略为治疗代谢性骨病提供了一种理想的新方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“Three birds, one stone” strategy of NIR-responsive CO/H2S dual-gas Nanogenerator for efficient treatment of osteoporosis

Osteoporosis (OP), the most prevalent bone degenerative disease, has become a significant public health challenge globally. Current therapies primarily target inhibiting osteoclast activity or stimulating osteoblast activation, but their effectiveness remains suboptimal. This paper introduced a “three birds, one stone” therapeutic approach for osteoporosis, employing upconversion nanoparticles (UCNPs) to create a dual-gas storage nanoplatform (UZPA-CP) targeting bone tissues, capable of concurrently generating carbon monoxide (CO) and hydrogen sulfide (H2S). Through the precise modulation of 808 nm near-infrared (NIR) light, the platform could effectively control the release of CO and H2S in the OP microenvironment, and realize the effective combination of promoting osteogenesis, inhibiting osteoclast activity, and improving the immune microenvironment to achieve the therapeutic effect of OP. High-throughput sequencing results further confirmed the remarkable effectiveness of the nanoplatform in inhibiting apoptosis, modulating inflammatory response, inhibiting osteoclast differentiation and regulating multiple immune signaling pathways. The gas storage nanoplatform not only optimized the OP microenvironment with the assistance of NIR, but also restored the balance between osteoblasts and osteoclasts. This comprehensive therapeutic strategy focused on improving the bone microenvironment, promoting osteogenesis and inhibiting osteoclast activity provides an ideal new solution for the treatment of metabolic bone diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
期刊最新文献
The combination of hydrogels and rutin-loaded black phosphorus nanosheets treats rheumatoid arthritis Decellularized extracellular matrix-based disease models for drug screening Polydopamine-functionalized calcium-deficient hydroxyapatite 3D-printed scaffold with sustained doxorubicin release for synergistic chemo-photothermal therapy of osteosarcoma and accelerated bone regeneration Editorial Board Amorphous zinc phosphate nanoclusters loaded polycarbonate thermosensitive hydrogel: An innovative strategy for promoting wound healing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1