求解一维平流扩散方程的两种量子算法

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-07-18 DOI:10.1016/j.compfluid.2024.106369
Julia Ingelmann , Sachin S. Bharadwaj , Philipp Pfeffer , Katepalli R. Sreenivasan , Jörg Schumacher
{"title":"求解一维平流扩散方程的两种量子算法","authors":"Julia Ingelmann ,&nbsp;Sachin S. Bharadwaj ,&nbsp;Philipp Pfeffer ,&nbsp;Katepalli R. Sreenivasan ,&nbsp;Jörg Schumacher","doi":"10.1016/j.compfluid.2024.106369","DOIUrl":null,"url":null,"abstract":"<div><p>Two quantum algorithms are presented for the numerical solution of a linear one-dimensional advection–diffusion equation with periodic boundary conditions. Their accuracy and performance with increasing qubit number are compared point-by-point with each other. Specifically, we solve the linear partial differential equation with a Quantum Linear Systems Algorithm (QLSA) based on the Harrow–Hassidim–Lloyd method and a Variational Quantum Algorithm (VQA), for resolutions that can be encoded using up to 6 qubits, which corresponds to <span><math><mrow><mi>N</mi><mo>=</mo><mn>64</mn></mrow></math></span> grid points on the unit interval. Both algorithms are hybrid in nature, i.e., they involve a combination of classical and quantum computing building blocks. The QLSA and VQA are solved as ideal statevector simulations using the in-house solver QFlowS and open-access Qiskit software, respectively. We discuss several aspects of both algorithms which are crucial for a successful performance in both cases. These are the accurate eigenvalue estimation with the quantum phase estimation for the QLSA and the choice of the algorithm of the minimization of the cost function for the VQA. The latter algorithm is also implemented in the noisy Qiskit framework including measurement noise. We reflect on the current limitations and suggest some possible routes of future research for the numerical simulation of classical fluid flows on a quantum computer.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106369"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0045793024002019/pdfft?md5=33d0c599592af889ca32afc28167dd15&pid=1-s2.0-S0045793024002019-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Two quantum algorithms for solving the one-dimensional advection–diffusion equation\",\"authors\":\"Julia Ingelmann ,&nbsp;Sachin S. Bharadwaj ,&nbsp;Philipp Pfeffer ,&nbsp;Katepalli R. Sreenivasan ,&nbsp;Jörg Schumacher\",\"doi\":\"10.1016/j.compfluid.2024.106369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two quantum algorithms are presented for the numerical solution of a linear one-dimensional advection–diffusion equation with periodic boundary conditions. Their accuracy and performance with increasing qubit number are compared point-by-point with each other. Specifically, we solve the linear partial differential equation with a Quantum Linear Systems Algorithm (QLSA) based on the Harrow–Hassidim–Lloyd method and a Variational Quantum Algorithm (VQA), for resolutions that can be encoded using up to 6 qubits, which corresponds to <span><math><mrow><mi>N</mi><mo>=</mo><mn>64</mn></mrow></math></span> grid points on the unit interval. Both algorithms are hybrid in nature, i.e., they involve a combination of classical and quantum computing building blocks. The QLSA and VQA are solved as ideal statevector simulations using the in-house solver QFlowS and open-access Qiskit software, respectively. We discuss several aspects of both algorithms which are crucial for a successful performance in both cases. These are the accurate eigenvalue estimation with the quantum phase estimation for the QLSA and the choice of the algorithm of the minimization of the cost function for the VQA. The latter algorithm is also implemented in the noisy Qiskit framework including measurement noise. We reflect on the current limitations and suggest some possible routes of future research for the numerical simulation of classical fluid flows on a quantum computer.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"281 \",\"pages\":\"Article 106369\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0045793024002019/pdfft?md5=33d0c599592af889ca32afc28167dd15&pid=1-s2.0-S0045793024002019-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024002019\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024002019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了两种量子算法,用于对具有周期性边界条件的线性一维平流-扩散方程进行数值求解。它们的精度和性能随着量子比特数的增加而逐点比较。具体来说,我们使用基于哈罗-哈西丁-劳埃德方法的量子线性系统算法(QLSA)和变异量子算法(VQA)求解线性偏微分方程,分辨率最多可使用 6 量子位编码,相当于单位区间上 N=64 个网格点。这两种算法在本质上都是混合算法,即它们涉及经典和量子计算构件的组合。QLSA 和 VQA 分别使用内部求解器 QFlowS 和开放式 Qiskit 软件作为理想状态矢量模拟求解。我们讨论了这两种算法的几个方面,它们对两种情况下的成功性能至关重要。这些方面包括 QLSA 的量子相位估计和 VQA 的成本函数最小化算法的选择。后一种算法也是在包含测量噪声的 Qiskit 框架中实现的。我们对目前的局限性进行了反思,并提出了未来在量子计算机上对经典流体流动进行数值模拟的一些可能研究路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two quantum algorithms for solving the one-dimensional advection–diffusion equation

Two quantum algorithms are presented for the numerical solution of a linear one-dimensional advection–diffusion equation with periodic boundary conditions. Their accuracy and performance with increasing qubit number are compared point-by-point with each other. Specifically, we solve the linear partial differential equation with a Quantum Linear Systems Algorithm (QLSA) based on the Harrow–Hassidim–Lloyd method and a Variational Quantum Algorithm (VQA), for resolutions that can be encoded using up to 6 qubits, which corresponds to N=64 grid points on the unit interval. Both algorithms are hybrid in nature, i.e., they involve a combination of classical and quantum computing building blocks. The QLSA and VQA are solved as ideal statevector simulations using the in-house solver QFlowS and open-access Qiskit software, respectively. We discuss several aspects of both algorithms which are crucial for a successful performance in both cases. These are the accurate eigenvalue estimation with the quantum phase estimation for the QLSA and the choice of the algorithm of the minimization of the cost function for the VQA. The latter algorithm is also implemented in the noisy Qiskit framework including measurement noise. We reflect on the current limitations and suggest some possible routes of future research for the numerical simulation of classical fluid flows on a quantum computer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board Efficient quantum lattice gas automata Energy-consistent discretization of viscous dissipation with application to natural convection flow The numerical analysis of complete and partial electrocoalescence in the droplet-layer system employing the sharp interface technique for multiphase-medium simulation Numerical investigation on the end effects of the flow past a finite rotating circular cylinder with two free ends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1