元件布局和切口技术对 FFF 加工热塑性塑料断裂韧性的影响

{"title":"元件布局和切口技术对 FFF 加工热塑性塑料断裂韧性的影响","authors":"","doi":"10.1016/j.prostr.2024.06.020","DOIUrl":null,"url":null,"abstract":"<div><p>This work explores the effects of notching method and element layout on the fracture loading properties of thermoplastic materials processed using fused filament fabrication (FFF). Three common thermoplastic materials were used (acrylonitrile butadiene styrene, polylatide, and polycarbonate). Four different notching methods were used, with printed and machined notches and with and without pre-cracking on ASTM <span><span>D5045</span><svg><path></path></svg></span> compact tension specimens (n = 36). It was concluded that the notching method has a statistically significant impact on the sample preparation and that pre-cracking is necessary in all cases. Using this information to prepare specimens, a designed experiment using four different element layout strategies and two different nozzle sizes was completed with a total of 72 tests. The layout pattern was shown to have a very strong effect on the maximum fracture load, with the nozzle size showing a smaller but still statistically significant impact. With the exception of one layout using polycarbonate with likely design-driven printing defects, the results were very consistent through several replications. The results of this study are useful for making design decisions with FFF-processed materials, for better understanding the impact of the process design, and for working toward standardized printing and testing methods for additive manufacturing.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452321624005572/pdf?md5=56204d7c58b14ec10406d044226adfee&pid=1-s2.0-S2452321624005572-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Impact of Element Layout and Notching Technique on the Fracture Toughness of FFF-Processed Thermoplastics\",\"authors\":\"\",\"doi\":\"10.1016/j.prostr.2024.06.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work explores the effects of notching method and element layout on the fracture loading properties of thermoplastic materials processed using fused filament fabrication (FFF). Three common thermoplastic materials were used (acrylonitrile butadiene styrene, polylatide, and polycarbonate). Four different notching methods were used, with printed and machined notches and with and without pre-cracking on ASTM <span><span>D5045</span><svg><path></path></svg></span> compact tension specimens (n = 36). It was concluded that the notching method has a statistically significant impact on the sample preparation and that pre-cracking is necessary in all cases. Using this information to prepare specimens, a designed experiment using four different element layout strategies and two different nozzle sizes was completed with a total of 72 tests. The layout pattern was shown to have a very strong effect on the maximum fracture load, with the nozzle size showing a smaller but still statistically significant impact. With the exception of one layout using polycarbonate with likely design-driven printing defects, the results were very consistent through several replications. The results of this study are useful for making design decisions with FFF-processed materials, for better understanding the impact of the process design, and for working toward standardized printing and testing methods for additive manufacturing.</p></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2452321624005572/pdf?md5=56204d7c58b14ec10406d044226adfee&pid=1-s2.0-S2452321624005572-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452321624005572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452321624005572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了切口方法和元件布局对使用熔融长丝制造(FFF)工艺加工的热塑性材料断裂加载性能的影响。研究使用了三种常见的热塑性材料(丙烯腈-丁二烯-苯乙烯、聚酰亚胺和聚碳酸酯)。在 ASTM D5045 紧凑型拉伸试样(n = 36)上使用了四种不同的切口方法,包括印刷切口和机加工切口,以及预裂和不预裂。得出的结论是,切口方法对试样制备有显著的统计学影响,并且在所有情况下都需要预裂纹。利用这些信息制备试样,使用四种不同的元件布局策略和两种不同的喷嘴尺寸完成了设计实验,共进行了 72 次测试。实验结果表明,布局模式对最大断裂载荷的影响非常大,喷嘴尺寸的影响较小,但在统计学上仍有显著影响。除了一个使用聚碳酸酯的布局可能存在设计驱动的印刷缺陷外,多次重复试验的结果都非常一致。这项研究的结果有助于使用 FFF 加工材料做出设计决策,有助于更好地理解工艺设计的影响,也有助于为增材制造制定标准化的打印和测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of Element Layout and Notching Technique on the Fracture Toughness of FFF-Processed Thermoplastics

This work explores the effects of notching method and element layout on the fracture loading properties of thermoplastic materials processed using fused filament fabrication (FFF). Three common thermoplastic materials were used (acrylonitrile butadiene styrene, polylatide, and polycarbonate). Four different notching methods were used, with printed and machined notches and with and without pre-cracking on ASTM D5045 compact tension specimens (n = 36). It was concluded that the notching method has a statistically significant impact on the sample preparation and that pre-cracking is necessary in all cases. Using this information to prepare specimens, a designed experiment using four different element layout strategies and two different nozzle sizes was completed with a total of 72 tests. The layout pattern was shown to have a very strong effect on the maximum fracture load, with the nozzle size showing a smaller but still statistically significant impact. With the exception of one layout using polycarbonate with likely design-driven printing defects, the results were very consistent through several replications. The results of this study are useful for making design decisions with FFF-processed materials, for better understanding the impact of the process design, and for working toward standardized printing and testing methods for additive manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Editorial Editorial Preface Editorial Strain measurement consistency of distributed fiber optic sensors for monitoring composite structures under various loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1