评估受体酪氨酸蛋白激酶 erbB-2 靶向共价抑制剂的无探针占位分析法

Liang Xue, Daniel van Kalken, Erika M. James, Giulia Giammo, Matthew T. Labenski, Susan Cantin, Kelly Fahnoe, Karin Worm, Zhigang Wang* and Alan F. Corin, 
{"title":"评估受体酪氨酸蛋白激酶 erbB-2 靶向共价抑制剂的无探针占位分析法","authors":"Liang Xue,&nbsp;Daniel van Kalken,&nbsp;Erika M. James,&nbsp;Giulia Giammo,&nbsp;Matthew T. Labenski,&nbsp;Susan Cantin,&nbsp;Kelly Fahnoe,&nbsp;Karin Worm,&nbsp;Zhigang Wang* and Alan F. Corin,&nbsp;","doi":"10.1021/acsptsci.4c0032610.1021/acsptsci.4c00326","DOIUrl":null,"url":null,"abstract":"<p >Establishing target engagement is fundamental to effective target-based drug development. It paves the way for efficient medicinal chemistry design and definitive answers about target validation in the clinic. For irreversible targeted covalent inhibitor (TCI) drugs, there is a unique opportunity to establish and quantify the target engagement or occupancy. This is typically accomplished by using a covalent molecular probe, often a TCI analogue, derivatized to allow unoccupied target sites to be tracked; the difference of total sites minus unoccupied sites yields the occupied sites. When such probes are not available or the target is not readily accessible to covalent probes, another approach is needed. Receptor tyrosine-protein kinase erbB-2 (HER2) occupancy by afatinib presents such a case. Available HER2 covalent probes were unable to consistently modify HER2 after sample preparation, resulting in inadequate data. We demonstrate an alternative quantitative probe-free occupancy (PFO) method. It employs the immunoprecipitation of HER2 and direct mass spectrometer analysis of the cysteine-containing peptide that is targeted and covalently occupied by afatinib. Nontarget HER2 peptides provide normalization to the total protein. We show that HER2 occupancy by afatinib correlates directly to the inhibition of the receptor tyrosine kinase activity in NCI-N87 cells in culture and <i>in vivo</i> using those cells in a mouse tumor xenograft mode.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2507–2515 2507–2515"},"PeriodicalIF":4.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Probe-Free Occupancy Assay to Assess a Targeted Covalent Inhibitor of Receptor Tyrosine-Protein Kinase erbB-2\",\"authors\":\"Liang Xue,&nbsp;Daniel van Kalken,&nbsp;Erika M. James,&nbsp;Giulia Giammo,&nbsp;Matthew T. Labenski,&nbsp;Susan Cantin,&nbsp;Kelly Fahnoe,&nbsp;Karin Worm,&nbsp;Zhigang Wang* and Alan F. Corin,&nbsp;\",\"doi\":\"10.1021/acsptsci.4c0032610.1021/acsptsci.4c00326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Establishing target engagement is fundamental to effective target-based drug development. It paves the way for efficient medicinal chemistry design and definitive answers about target validation in the clinic. For irreversible targeted covalent inhibitor (TCI) drugs, there is a unique opportunity to establish and quantify the target engagement or occupancy. This is typically accomplished by using a covalent molecular probe, often a TCI analogue, derivatized to allow unoccupied target sites to be tracked; the difference of total sites minus unoccupied sites yields the occupied sites. When such probes are not available or the target is not readily accessible to covalent probes, another approach is needed. Receptor tyrosine-protein kinase erbB-2 (HER2) occupancy by afatinib presents such a case. Available HER2 covalent probes were unable to consistently modify HER2 after sample preparation, resulting in inadequate data. We demonstrate an alternative quantitative probe-free occupancy (PFO) method. It employs the immunoprecipitation of HER2 and direct mass spectrometer analysis of the cysteine-containing peptide that is targeted and covalently occupied by afatinib. Nontarget HER2 peptides provide normalization to the total protein. We show that HER2 occupancy by afatinib correlates directly to the inhibition of the receptor tyrosine kinase activity in NCI-N87 cells in culture and <i>in vivo</i> using those cells in a mouse tumor xenograft mode.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 8\",\"pages\":\"2507–2515 2507–2515\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

建立靶点参与度是有效进行基于靶点的药物开发的基础。它为高效的药物化学设计和临床中的靶点验证铺平了道路。对于不可逆的靶向共价抑制剂(TCI)药物来说,有一个独特的机会来确定和量化靶点的参与度或占据率。这通常是通过使用共价分子探针(通常是 TCI 类似物)来实现的,该探针经过衍生处理,可追踪未占据的靶点;总靶点减去未占据靶点的差值即为占据靶点。如果没有这种探针,或者共价探针无法轻易找到靶点,就需要采用另一种方法。受体酪氨酸蛋白激酶erbB-2(HER2)被阿法替尼占据就是这种情况。现有的 HER2 共价探针在样品制备后无法持续修饰 HER2,导致数据不足。我们展示了另一种无探针定量占位(PFO)方法。它采用免疫沉淀 HER2,并直接用质谱仪分析被阿法替尼靶向和共价占据的含半胱氨酸肽。非靶向的HER2肽为总蛋白提供归一化。我们的研究表明,阿法替尼对HER2的占据直接关系到对NCI-N87细胞中受体酪氨酸激酶活性的抑制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Probe-Free Occupancy Assay to Assess a Targeted Covalent Inhibitor of Receptor Tyrosine-Protein Kinase erbB-2

Establishing target engagement is fundamental to effective target-based drug development. It paves the way for efficient medicinal chemistry design and definitive answers about target validation in the clinic. For irreversible targeted covalent inhibitor (TCI) drugs, there is a unique opportunity to establish and quantify the target engagement or occupancy. This is typically accomplished by using a covalent molecular probe, often a TCI analogue, derivatized to allow unoccupied target sites to be tracked; the difference of total sites minus unoccupied sites yields the occupied sites. When such probes are not available or the target is not readily accessible to covalent probes, another approach is needed. Receptor tyrosine-protein kinase erbB-2 (HER2) occupancy by afatinib presents such a case. Available HER2 covalent probes were unable to consistently modify HER2 after sample preparation, resulting in inadequate data. We demonstrate an alternative quantitative probe-free occupancy (PFO) method. It employs the immunoprecipitation of HER2 and direct mass spectrometer analysis of the cysteine-containing peptide that is targeted and covalently occupied by afatinib. Nontarget HER2 peptides provide normalization to the total protein. We show that HER2 occupancy by afatinib correlates directly to the inhibition of the receptor tyrosine kinase activity in NCI-N87 cells in culture and in vivo using those cells in a mouse tumor xenograft mode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Amaryllidaceae Alkaloids Screen Unveils Potent Anticoronaviral Compounds and Associated Structural Determinants Amaryllidaceae Alkaloids Screen Unveils Potent Anticoronaviral Compounds and Associated Structural Determinants. Correction to “Schisandrin B Suppresses Colon Cancer Growth by Inducing Cell Cycle Arrest and Apoptosis: Molecular Mechanism and Therapeutic Potential”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1