Kenan Aloss, Pedro Henrique Leroy Viana, Syeda Mahak Zahra Bokhari, Nino Giunashvili, Csaba András Schvarcz, Dániel Bócsi, Zoltán Koós, Zoltán Benyó and Péter Hamar*,
{"title":"伊维菌素在三阴性乳腺癌小鼠模型中与调制电热疗法协同作用并提高其抗癌效果","authors":"Kenan Aloss, Pedro Henrique Leroy Viana, Syeda Mahak Zahra Bokhari, Nino Giunashvili, Csaba András Schvarcz, Dániel Bócsi, Zoltán Koós, Zoltán Benyó and Péter Hamar*, ","doi":"10.1021/acsptsci.4c0031410.1021/acsptsci.4c00314","DOIUrl":null,"url":null,"abstract":"<p >Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with limited treatment options. Modulated electro-hyperthermia (mEHT) is a novel adjuvant cancer therapy that induces selective cancer damage. However, mEHT upregulates heat shock protein beta 1 (HSPB1), a cancer-promoting stress chaperone molecule. Thus, we investigated whether ivermectin (IVM), an anthelmintic drug, may synergize with mEHT and enhance its anticancer effects by inhibiting HSPB1 phosphorylation. Isogenic 4T1 TNBC cells were inoculated into BALB/c mice and treated with mEHT, IVM, or a combination of both. IVM synergistically improved the tumor growth inhibition achieved by mEHT. Moreover, IVM downregulated mEHT-induced HSPB1 phosphorylation. Thus, the strongest cancer tissue damage was observed in the mEHT + IVM-treated tumors, coupled with the strongest apoptosis induction and proliferation inhibition. In addition, there was no significant body weight loss in mice treated with mEHT and IVM, indicating that this combination was well-tolerated. In conclusion, mEHT combined with IVM is a new, effective, and safe option for the treatment of TNBC.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2496–2506 2496–2506"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00314","citationCount":"0","resultStr":"{\"title\":\"Ivermectin Synergizes with Modulated Electro-hyperthermia and Improves Its Anticancer Effects in a Triple-Negative Breast Cancer Mouse Model\",\"authors\":\"Kenan Aloss, Pedro Henrique Leroy Viana, Syeda Mahak Zahra Bokhari, Nino Giunashvili, Csaba András Schvarcz, Dániel Bócsi, Zoltán Koós, Zoltán Benyó and Péter Hamar*, \",\"doi\":\"10.1021/acsptsci.4c0031410.1021/acsptsci.4c00314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with limited treatment options. Modulated electro-hyperthermia (mEHT) is a novel adjuvant cancer therapy that induces selective cancer damage. However, mEHT upregulates heat shock protein beta 1 (HSPB1), a cancer-promoting stress chaperone molecule. Thus, we investigated whether ivermectin (IVM), an anthelmintic drug, may synergize with mEHT and enhance its anticancer effects by inhibiting HSPB1 phosphorylation. Isogenic 4T1 TNBC cells were inoculated into BALB/c mice and treated with mEHT, IVM, or a combination of both. IVM synergistically improved the tumor growth inhibition achieved by mEHT. Moreover, IVM downregulated mEHT-induced HSPB1 phosphorylation. Thus, the strongest cancer tissue damage was observed in the mEHT + IVM-treated tumors, coupled with the strongest apoptosis induction and proliferation inhibition. In addition, there was no significant body weight loss in mice treated with mEHT and IVM, indicating that this combination was well-tolerated. In conclusion, mEHT combined with IVM is a new, effective, and safe option for the treatment of TNBC.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 8\",\"pages\":\"2496–2506 2496–2506\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00314\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Ivermectin Synergizes with Modulated Electro-hyperthermia and Improves Its Anticancer Effects in a Triple-Negative Breast Cancer Mouse Model
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, with limited treatment options. Modulated electro-hyperthermia (mEHT) is a novel adjuvant cancer therapy that induces selective cancer damage. However, mEHT upregulates heat shock protein beta 1 (HSPB1), a cancer-promoting stress chaperone molecule. Thus, we investigated whether ivermectin (IVM), an anthelmintic drug, may synergize with mEHT and enhance its anticancer effects by inhibiting HSPB1 phosphorylation. Isogenic 4T1 TNBC cells were inoculated into BALB/c mice and treated with mEHT, IVM, or a combination of both. IVM synergistically improved the tumor growth inhibition achieved by mEHT. Moreover, IVM downregulated mEHT-induced HSPB1 phosphorylation. Thus, the strongest cancer tissue damage was observed in the mEHT + IVM-treated tumors, coupled with the strongest apoptosis induction and proliferation inhibition. In addition, there was no significant body weight loss in mice treated with mEHT and IVM, indicating that this combination was well-tolerated. In conclusion, mEHT combined with IVM is a new, effective, and safe option for the treatment of TNBC.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.