{"title":"用于胃癌的 Claudin18.2 靶向 SPECT/CT 成像:99mTc 标记纳米抗体 (PHG102) 放射性示踪剂的临床前评估和临床转化","authors":"Zhidong Bai, Xin Xie, Chenzhen Li, Yuchen Wang, Yuanbo Wang, Huijie Li, Rui Gao* and Bing Jia*, ","doi":"10.1021/acsptsci.4c0028010.1021/acsptsci.4c00280","DOIUrl":null,"url":null,"abstract":"<p >Claudin18.2 (CLDN18.2) has emerged as a significant target in the treatment of advanced gastric cancer. The screening of patients positive for CLDN18.2 is crucial for the effective application of targeted therapies specific to CLND18.2. In this study, we developed a novel nanobody-based probe, [<sup>99m</sup>Tc]Tc-PHG102, for use in nuclear medicine. We analyzed its radiochemical yield and stability to ensure accurate probe characterization. Additionally, we assessed the probe’s affinity and specificity toward the CLDN18.2 target and evaluated its efficacy in the BGC823<sup>18.2</sup> xenograft model for SPECT/CT imaging of gastric cancer. The binding of [<sup>99m</sup>Tc]Tc-PHG102 to HEK-293T<sup>18.2</sup> and BGC823<sup>18.2</sup> cells was notably higher than its binding to HEK-293T<sup>18.1</sup>, HEK-293T, and BGC823 cells, with bound values of 12.87 ± 1.46%, 6.16 ± 0.34%, 1.25 ± 0.22%, 1.14 ± 0.26%, and 1.32 ± 0.07% AD, respectively. The binding ability of [<sup>99m</sup>Tc]Tc-PHG102 was significantly different between CLDN18.2-positive and negative cells (<i>P</i> < 0.001). Imaging results demonstrated a time-dependent tumor accumulation of the radiotracer. Notably, at 0.5 h postinjection, rapid accumulation was observed with an average tumor uptake of 4.63 ± 0.81% ID/cc (<i>n</i> = 3), resulting in clear tumor visualization. By 1 h postinjection, as [<sup>99m</sup>Tc]Tc-PHG102 was rapidly metabolized, a decrease in uptake by other organs was noted. Preliminary clinical imaging trials further confirmed the safety and effectiveness of the probe, indicating specificity for lesions expressing CLDN18.2 in gastric cancer and favorable in vivo metabolic properties. In conclusion, the nanobody-based probe [<sup>99m</sup>Tc]Tc-PHG102 proves to be a safe and effective tool for detecting CLDN18.2 expression levels in gastric cancer tumors and for screening CLDN18.2-positive patients.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2465–2475 2465–2475"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Claudin18.2-Targeted SPECT/CT Imaging for Gastric Cancer: Preclinical Evaluation and Clinical Translation of the 99mTc-Labeled Nanobody (PHG102) Radiotracer\",\"authors\":\"Zhidong Bai, Xin Xie, Chenzhen Li, Yuchen Wang, Yuanbo Wang, Huijie Li, Rui Gao* and Bing Jia*, \",\"doi\":\"10.1021/acsptsci.4c0028010.1021/acsptsci.4c00280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Claudin18.2 (CLDN18.2) has emerged as a significant target in the treatment of advanced gastric cancer. The screening of patients positive for CLDN18.2 is crucial for the effective application of targeted therapies specific to CLND18.2. In this study, we developed a novel nanobody-based probe, [<sup>99m</sup>Tc]Tc-PHG102, for use in nuclear medicine. We analyzed its radiochemical yield and stability to ensure accurate probe characterization. Additionally, we assessed the probe’s affinity and specificity toward the CLDN18.2 target and evaluated its efficacy in the BGC823<sup>18.2</sup> xenograft model for SPECT/CT imaging of gastric cancer. The binding of [<sup>99m</sup>Tc]Tc-PHG102 to HEK-293T<sup>18.2</sup> and BGC823<sup>18.2</sup> cells was notably higher than its binding to HEK-293T<sup>18.1</sup>, HEK-293T, and BGC823 cells, with bound values of 12.87 ± 1.46%, 6.16 ± 0.34%, 1.25 ± 0.22%, 1.14 ± 0.26%, and 1.32 ± 0.07% AD, respectively. The binding ability of [<sup>99m</sup>Tc]Tc-PHG102 was significantly different between CLDN18.2-positive and negative cells (<i>P</i> < 0.001). Imaging results demonstrated a time-dependent tumor accumulation of the radiotracer. Notably, at 0.5 h postinjection, rapid accumulation was observed with an average tumor uptake of 4.63 ± 0.81% ID/cc (<i>n</i> = 3), resulting in clear tumor visualization. By 1 h postinjection, as [<sup>99m</sup>Tc]Tc-PHG102 was rapidly metabolized, a decrease in uptake by other organs was noted. Preliminary clinical imaging trials further confirmed the safety and effectiveness of the probe, indicating specificity for lesions expressing CLDN18.2 in gastric cancer and favorable in vivo metabolic properties. In conclusion, the nanobody-based probe [<sup>99m</sup>Tc]Tc-PHG102 proves to be a safe and effective tool for detecting CLDN18.2 expression levels in gastric cancer tumors and for screening CLDN18.2-positive patients.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 8\",\"pages\":\"2465–2475 2465–2475\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Claudin18.2-Targeted SPECT/CT Imaging for Gastric Cancer: Preclinical Evaluation and Clinical Translation of the 99mTc-Labeled Nanobody (PHG102) Radiotracer
Claudin18.2 (CLDN18.2) has emerged as a significant target in the treatment of advanced gastric cancer. The screening of patients positive for CLDN18.2 is crucial for the effective application of targeted therapies specific to CLND18.2. In this study, we developed a novel nanobody-based probe, [99mTc]Tc-PHG102, for use in nuclear medicine. We analyzed its radiochemical yield and stability to ensure accurate probe characterization. Additionally, we assessed the probe’s affinity and specificity toward the CLDN18.2 target and evaluated its efficacy in the BGC82318.2 xenograft model for SPECT/CT imaging of gastric cancer. The binding of [99mTc]Tc-PHG102 to HEK-293T18.2 and BGC82318.2 cells was notably higher than its binding to HEK-293T18.1, HEK-293T, and BGC823 cells, with bound values of 12.87 ± 1.46%, 6.16 ± 0.34%, 1.25 ± 0.22%, 1.14 ± 0.26%, and 1.32 ± 0.07% AD, respectively. The binding ability of [99mTc]Tc-PHG102 was significantly different between CLDN18.2-positive and negative cells (P < 0.001). Imaging results demonstrated a time-dependent tumor accumulation of the radiotracer. Notably, at 0.5 h postinjection, rapid accumulation was observed with an average tumor uptake of 4.63 ± 0.81% ID/cc (n = 3), resulting in clear tumor visualization. By 1 h postinjection, as [99mTc]Tc-PHG102 was rapidly metabolized, a decrease in uptake by other organs was noted. Preliminary clinical imaging trials further confirmed the safety and effectiveness of the probe, indicating specificity for lesions expressing CLDN18.2 in gastric cancer and favorable in vivo metabolic properties. In conclusion, the nanobody-based probe [99mTc]Tc-PHG102 proves to be a safe and effective tool for detecting CLDN18.2 expression levels in gastric cancer tumors and for screening CLDN18.2-positive patients.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.