用于胃癌的 Claudin18.2 靶向 SPECT/CT 成像:99mTc 标记纳米抗体 (PHG102) 放射性示踪剂的临床前评估和临床转化

Zhidong Bai, Xin Xie, Chenzhen Li, Yuchen Wang, Yuanbo Wang, Huijie Li, Rui Gao* and Bing Jia*, 
{"title":"用于胃癌的 Claudin18.2 靶向 SPECT/CT 成像:99mTc 标记纳米抗体 (PHG102) 放射性示踪剂的临床前评估和临床转化","authors":"Zhidong Bai,&nbsp;Xin Xie,&nbsp;Chenzhen Li,&nbsp;Yuchen Wang,&nbsp;Yuanbo Wang,&nbsp;Huijie Li,&nbsp;Rui Gao* and Bing Jia*,&nbsp;","doi":"10.1021/acsptsci.4c0028010.1021/acsptsci.4c00280","DOIUrl":null,"url":null,"abstract":"<p >Claudin18.2 (CLDN18.2) has emerged as a significant target in the treatment of advanced gastric cancer. The screening of patients positive for CLDN18.2 is crucial for the effective application of targeted therapies specific to CLND18.2. In this study, we developed a novel nanobody-based probe, [<sup>99m</sup>Tc]Tc-PHG102, for use in nuclear medicine. We analyzed its radiochemical yield and stability to ensure accurate probe characterization. Additionally, we assessed the probe’s affinity and specificity toward the CLDN18.2 target and evaluated its efficacy in the BGC823<sup>18.2</sup> xenograft model for SPECT/CT imaging of gastric cancer. The binding of [<sup>99m</sup>Tc]Tc-PHG102 to HEK-293T<sup>18.2</sup> and BGC823<sup>18.2</sup> cells was notably higher than its binding to HEK-293T<sup>18.1</sup>, HEK-293T, and BGC823 cells, with bound values of 12.87 ± 1.46%, 6.16 ± 0.34%, 1.25 ± 0.22%, 1.14 ± 0.26%, and 1.32 ± 0.07% AD, respectively. The binding ability of [<sup>99m</sup>Tc]Tc-PHG102 was significantly different between CLDN18.2-positive and negative cells (<i>P</i> &lt; 0.001). Imaging results demonstrated a time-dependent tumor accumulation of the radiotracer. Notably, at 0.5 h postinjection, rapid accumulation was observed with an average tumor uptake of 4.63 ± 0.81% ID/cc (<i>n</i> = 3), resulting in clear tumor visualization. By 1 h postinjection, as [<sup>99m</sup>Tc]Tc-PHG102 was rapidly metabolized, a decrease in uptake by other organs was noted. Preliminary clinical imaging trials further confirmed the safety and effectiveness of the probe, indicating specificity for lesions expressing CLDN18.2 in gastric cancer and favorable in vivo metabolic properties. In conclusion, the nanobody-based probe [<sup>99m</sup>Tc]Tc-PHG102 proves to be a safe and effective tool for detecting CLDN18.2 expression levels in gastric cancer tumors and for screening CLDN18.2-positive patients.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2465–2475 2465–2475"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Claudin18.2-Targeted SPECT/CT Imaging for Gastric Cancer: Preclinical Evaluation and Clinical Translation of the 99mTc-Labeled Nanobody (PHG102) Radiotracer\",\"authors\":\"Zhidong Bai,&nbsp;Xin Xie,&nbsp;Chenzhen Li,&nbsp;Yuchen Wang,&nbsp;Yuanbo Wang,&nbsp;Huijie Li,&nbsp;Rui Gao* and Bing Jia*,&nbsp;\",\"doi\":\"10.1021/acsptsci.4c0028010.1021/acsptsci.4c00280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Claudin18.2 (CLDN18.2) has emerged as a significant target in the treatment of advanced gastric cancer. The screening of patients positive for CLDN18.2 is crucial for the effective application of targeted therapies specific to CLND18.2. In this study, we developed a novel nanobody-based probe, [<sup>99m</sup>Tc]Tc-PHG102, for use in nuclear medicine. We analyzed its radiochemical yield and stability to ensure accurate probe characterization. Additionally, we assessed the probe’s affinity and specificity toward the CLDN18.2 target and evaluated its efficacy in the BGC823<sup>18.2</sup> xenograft model for SPECT/CT imaging of gastric cancer. The binding of [<sup>99m</sup>Tc]Tc-PHG102 to HEK-293T<sup>18.2</sup> and BGC823<sup>18.2</sup> cells was notably higher than its binding to HEK-293T<sup>18.1</sup>, HEK-293T, and BGC823 cells, with bound values of 12.87 ± 1.46%, 6.16 ± 0.34%, 1.25 ± 0.22%, 1.14 ± 0.26%, and 1.32 ± 0.07% AD, respectively. The binding ability of [<sup>99m</sup>Tc]Tc-PHG102 was significantly different between CLDN18.2-positive and negative cells (<i>P</i> &lt; 0.001). Imaging results demonstrated a time-dependent tumor accumulation of the radiotracer. Notably, at 0.5 h postinjection, rapid accumulation was observed with an average tumor uptake of 4.63 ± 0.81% ID/cc (<i>n</i> = 3), resulting in clear tumor visualization. By 1 h postinjection, as [<sup>99m</sup>Tc]Tc-PHG102 was rapidly metabolized, a decrease in uptake by other organs was noted. Preliminary clinical imaging trials further confirmed the safety and effectiveness of the probe, indicating specificity for lesions expressing CLDN18.2 in gastric cancer and favorable in vivo metabolic properties. In conclusion, the nanobody-based probe [<sup>99m</sup>Tc]Tc-PHG102 proves to be a safe and effective tool for detecting CLDN18.2 expression levels in gastric cancer tumors and for screening CLDN18.2-positive patients.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 8\",\"pages\":\"2465–2475 2465–2475\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

Claudin18.2(CLDN18.2)已成为治疗晚期胃癌的重要靶点。筛查 CLDN18.2 阳性患者对于有效应用针对 CLND18.2 的靶向疗法至关重要。在这项研究中,我们开发了一种基于纳米抗体的新型探针--[99mTc]Tc-PHG102,用于核医学。我们分析了它的放射化学产率和稳定性,以确保探针特征的准确性。此外,我们还评估了探针对CLDN18.2靶点的亲和力和特异性,并在BGC82318.2异种移植模型中评估了其对胃癌SPECT/CT成像的疗效。[99mTc]Tc-PHG102与HEK-293T18.2和BGC82318.2细胞的结合率明显高于与HEK-293T18.1、HEK-293T和BGC823细胞的结合率,结合值分别为12.87±1.46%、6.16±0.34%、1.25±0.22%、1.14±0.26%和1.32±0.07% AD。[99mTc]Tc-PHG102的结合能力在CLDN18.2阳性细胞和阴性细胞之间存在显著差异(P < 0.001)。成像结果表明,放射性示踪剂在肿瘤中的积累与时间有关。值得注意的是,在注射后 0.5 小时,观察到肿瘤快速积累,平均摄取量为 4.63 ± 0.81% ID/cc(n = 3),肿瘤清晰可见。注射后1小时,由于[99m锝]Tc-PHG102被迅速代谢,其他器官的摄取量有所下降。初步临床成像试验进一步证实了该探针的安全性和有效性,表明它对胃癌中表达 CLDN18.2 的病灶具有特异性,并具有良好的体内代谢特性。总之,基于纳米抗体的探针[99mTc]Tc-PHG102被证明是检测胃癌肿瘤中CLDN18.2表达水平和筛查CLDN18.2阳性患者的一种安全有效的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Claudin18.2-Targeted SPECT/CT Imaging for Gastric Cancer: Preclinical Evaluation and Clinical Translation of the 99mTc-Labeled Nanobody (PHG102) Radiotracer

Claudin18.2 (CLDN18.2) has emerged as a significant target in the treatment of advanced gastric cancer. The screening of patients positive for CLDN18.2 is crucial for the effective application of targeted therapies specific to CLND18.2. In this study, we developed a novel nanobody-based probe, [99mTc]Tc-PHG102, for use in nuclear medicine. We analyzed its radiochemical yield and stability to ensure accurate probe characterization. Additionally, we assessed the probe’s affinity and specificity toward the CLDN18.2 target and evaluated its efficacy in the BGC82318.2 xenograft model for SPECT/CT imaging of gastric cancer. The binding of [99mTc]Tc-PHG102 to HEK-293T18.2 and BGC82318.2 cells was notably higher than its binding to HEK-293T18.1, HEK-293T, and BGC823 cells, with bound values of 12.87 ± 1.46%, 6.16 ± 0.34%, 1.25 ± 0.22%, 1.14 ± 0.26%, and 1.32 ± 0.07% AD, respectively. The binding ability of [99mTc]Tc-PHG102 was significantly different between CLDN18.2-positive and negative cells (P < 0.001). Imaging results demonstrated a time-dependent tumor accumulation of the radiotracer. Notably, at 0.5 h postinjection, rapid accumulation was observed with an average tumor uptake of 4.63 ± 0.81% ID/cc (n = 3), resulting in clear tumor visualization. By 1 h postinjection, as [99mTc]Tc-PHG102 was rapidly metabolized, a decrease in uptake by other organs was noted. Preliminary clinical imaging trials further confirmed the safety and effectiveness of the probe, indicating specificity for lesions expressing CLDN18.2 in gastric cancer and favorable in vivo metabolic properties. In conclusion, the nanobody-based probe [99mTc]Tc-PHG102 proves to be a safe and effective tool for detecting CLDN18.2 expression levels in gastric cancer tumors and for screening CLDN18.2-positive patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Amaryllidaceae Alkaloids Screen Unveils Potent Anticoronaviral Compounds and Associated Structural Determinants Amaryllidaceae Alkaloids Screen Unveils Potent Anticoronaviral Compounds and Associated Structural Determinants. Correction to “Schisandrin B Suppresses Colon Cancer Growth by Inducing Cell Cycle Arrest and Apoptosis: Molecular Mechanism and Therapeutic Potential”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1