机器学习引导的自适应激光功率控制在选择性激光熔化减少孔隙中的应用

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL Cirp Annals-Manufacturing Technology Pub Date : 2024-01-01 DOI:10.1016/j.cirp.2024.04.043
Fred M. Carter III (3) , Conor Porter , Dominik Kozjek , Kento Shimoyoshi , Makoto Fujishima (3) , Naruhiro Irino (2) , Jian Cao (1)
{"title":"机器学习引导的自适应激光功率控制在选择性激光熔化减少孔隙中的应用","authors":"Fred M. Carter III (3) ,&nbsp;Conor Porter ,&nbsp;Dominik Kozjek ,&nbsp;Kento Shimoyoshi ,&nbsp;Makoto Fujishima (3) ,&nbsp;Naruhiro Irino (2) ,&nbsp;Jian Cao (1)","doi":"10.1016/j.cirp.2024.04.043","DOIUrl":null,"url":null,"abstract":"<div><p>An adaptive laser power control strategy for Selective Laser Melting (SLM) has been developed using data from a co-axial photodiode monitoring system with 200 KHz temporal resolution. A supervised machine learning based algorithm outputs variable laser power along the scanning path based on mechanistic features. The approach was implemented on a commercial machine and demonstrated an average 12 % reduction in porosity size and 65 % reduction in the standard deviation of porosity size measured by X-Ray Computed Tomography (CT) compared to parts built with constant laser power. This approach is scalable and its precalculated nature is compatible with regulatory concerns.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 149-152"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning guided adaptive laser power control in selective laser melting for pore reduction\",\"authors\":\"Fred M. Carter III (3) ,&nbsp;Conor Porter ,&nbsp;Dominik Kozjek ,&nbsp;Kento Shimoyoshi ,&nbsp;Makoto Fujishima (3) ,&nbsp;Naruhiro Irino (2) ,&nbsp;Jian Cao (1)\",\"doi\":\"10.1016/j.cirp.2024.04.043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An adaptive laser power control strategy for Selective Laser Melting (SLM) has been developed using data from a co-axial photodiode monitoring system with 200 KHz temporal resolution. A supervised machine learning based algorithm outputs variable laser power along the scanning path based on mechanistic features. The approach was implemented on a commercial machine and demonstrated an average 12 % reduction in porosity size and 65 % reduction in the standard deviation of porosity size measured by X-Ray Computed Tomography (CT) compared to parts built with constant laser power. This approach is scalable and its precalculated nature is compatible with regulatory concerns.</p></div>\",\"PeriodicalId\":55256,\"journal\":{\"name\":\"Cirp Annals-Manufacturing Technology\",\"volume\":\"73 1\",\"pages\":\"Pages 149-152\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cirp Annals-Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000785062400057X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000785062400057X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

利用时间分辨率为 200 KHz 的同轴光电二极管监测系统的数据,开发了一种用于选择性激光熔化(SLM)的自适应激光功率控制策略。基于监督机器学习的算法可根据机械特征沿扫描路径输出可变激光功率。该方法已在一台商用机器上实施,与使用恒定激光功率制造的部件相比,X 射线计算机断层扫描(CT)测量的气孔尺寸平均减少了 12%,气孔尺寸标准偏差减少了 65%。这种方法具有可扩展性,其预先计算的性质符合监管要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning guided adaptive laser power control in selective laser melting for pore reduction

An adaptive laser power control strategy for Selective Laser Melting (SLM) has been developed using data from a co-axial photodiode monitoring system with 200 KHz temporal resolution. A supervised machine learning based algorithm outputs variable laser power along the scanning path based on mechanistic features. The approach was implemented on a commercial machine and demonstrated an average 12 % reduction in porosity size and 65 % reduction in the standard deviation of porosity size measured by X-Ray Computed Tomography (CT) compared to parts built with constant laser power. This approach is scalable and its precalculated nature is compatible with regulatory concerns.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
期刊最新文献
Interfacial characteristics in multi-material laser powder bed fusion of CuZr/316L stainless steel Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator Throughput scaling and thermomechanical behaviour in multiplexed fused filament fabrication Generative AI and neural networks towards advanced robot cognition Precision optimized process design for highly repeatable handling with articulated industrial robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1