人工智能如何实现市场规模的数据分类 - 从实际应用中获得的启示

L. Stallings, P. Bhat, J. Jacobs, K. Lynch, Q. Risch
{"title":"人工智能如何实现市场规模的数据分类 - 从实际应用中获得的启示","authors":"L. Stallings,&nbsp;P. Bhat,&nbsp;J. Jacobs,&nbsp;K. Lynch,&nbsp;Q. Risch","doi":"10.1016/j.jjimei.2024.100271","DOIUrl":null,"url":null,"abstract":"<div><p>Determining the size of the addressable market is a key aspect of market intelligence and requires identifying and delineating projected budget data from potential customers. The market intelligence arena is characterized by a wide range of disparate sources, many of which are unstructured, ranging across competitive, market, financial, and technology sources, and typically necessitating significant manual work to analyze, reconcile, and integrate. The authors present an approach for classification of data from one of these sources, facilitating aggregation and analysis of intelligence information. We describe a concept proof using machine learning that extends a model for automatic mapping of publicly available budget data to segments and subsegments of a market segmentation taxonomy. This approach automates the tagging of market and market segment for each program and cost element by training classification models on the manually labeled historical data. We describe the evaluation and use of multiple natural language processing (NLP) and classification modeling methods. This work's contribution is demonstrating how NLP and machine learning techniques can provide useful data classification and automatic classification even when source data diverges from its specified taxonomic description.</p></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100271"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667096824000600/pdfft?md5=f455d366514604d1b44909bde4178aa6&pid=1-s2.0-S2667096824000600-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How artificial intelligence can enable data classification for market sizing - Insights from applications in practice\",\"authors\":\"L. Stallings,&nbsp;P. Bhat,&nbsp;J. Jacobs,&nbsp;K. Lynch,&nbsp;Q. Risch\",\"doi\":\"10.1016/j.jjimei.2024.100271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Determining the size of the addressable market is a key aspect of market intelligence and requires identifying and delineating projected budget data from potential customers. The market intelligence arena is characterized by a wide range of disparate sources, many of which are unstructured, ranging across competitive, market, financial, and technology sources, and typically necessitating significant manual work to analyze, reconcile, and integrate. The authors present an approach for classification of data from one of these sources, facilitating aggregation and analysis of intelligence information. We describe a concept proof using machine learning that extends a model for automatic mapping of publicly available budget data to segments and subsegments of a market segmentation taxonomy. This approach automates the tagging of market and market segment for each program and cost element by training classification models on the manually labeled historical data. We describe the evaluation and use of multiple natural language processing (NLP) and classification modeling methods. This work's contribution is demonstrating how NLP and machine learning techniques can provide useful data classification and automatic classification even when source data diverges from its specified taxonomic description.</p></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 2\",\"pages\":\"Article 100271\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000600/pdfft?md5=f455d366514604d1b44909bde4178aa6&pid=1-s2.0-S2667096824000600-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000600\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

确定可寻址市场的规模是市场情报的一个关键方面,需要识别和划分潜在客户的预计预算数据。市场情报领域的特点是来源广泛,许多来源都是非结构化的,涉及竞争、市场、金融和技术来源,通常需要大量的人工工作来分析、协调和整合。作者介绍了一种对来自其中一个来源的数据进行分类的方法,有助于情报信息的汇总和分析。我们介绍了一种利用机器学习进行概念验证的方法,该方法扩展了一个模型,可将公开的预算数据自动映射到市场细分分类法的细分市场和子细分市场。这种方法通过在人工标注的历史数据上训练分类模型,为每个计划和成本要素自动标注市场和细分市场。我们介绍了多种自然语言处理 (NLP) 和分类建模方法的评估和使用。这项工作的贡献在于展示了 NLP 和机器学习技术如何提供有用的数据分类和自动分类,即使源数据偏离了指定的分类描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
How artificial intelligence can enable data classification for market sizing - Insights from applications in practice

Determining the size of the addressable market is a key aspect of market intelligence and requires identifying and delineating projected budget data from potential customers. The market intelligence arena is characterized by a wide range of disparate sources, many of which are unstructured, ranging across competitive, market, financial, and technology sources, and typically necessitating significant manual work to analyze, reconcile, and integrate. The authors present an approach for classification of data from one of these sources, facilitating aggregation and analysis of intelligence information. We describe a concept proof using machine learning that extends a model for automatic mapping of publicly available budget data to segments and subsegments of a market segmentation taxonomy. This approach automates the tagging of market and market segment for each program and cost element by training classification models on the manually labeled historical data. We describe the evaluation and use of multiple natural language processing (NLP) and classification modeling methods. This work's contribution is demonstrating how NLP and machine learning techniques can provide useful data classification and automatic classification even when source data diverges from its specified taxonomic description.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1