利用基于变压器的参数预测进行高效作物行检测

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2024-07-25 DOI:10.1016/j.biosystemseng.2024.07.016
Zhiming Guo , Longzhe Quan , Deng Sun , Zhaoxia Lou , Yuhang Geng , Tianbao Chen , Yi Xue , Jinbing He , Pengbiao Hou , Chuan Wang , Jiakang Wang
{"title":"利用基于变压器的参数预测进行高效作物行检测","authors":"Zhiming Guo ,&nbsp;Longzhe Quan ,&nbsp;Deng Sun ,&nbsp;Zhaoxia Lou ,&nbsp;Yuhang Geng ,&nbsp;Tianbao Chen ,&nbsp;Yi Xue ,&nbsp;Jinbing He ,&nbsp;Pengbiao Hou ,&nbsp;Chuan Wang ,&nbsp;Jiakang Wang","doi":"10.1016/j.biosystemseng.2024.07.016","DOIUrl":null,"url":null,"abstract":"<div><p>The detection of crop rows is crucial for achieving visual navigation and is one of the key technologies for enabling autonomous management of maize fields. However, the current mainstream approach to maize crop row detection often involves two steps - feature extraction followed by post-processing. While useful, this method is inefficient, and the heuristic rules designed by humans limit the scalability of these methods. To simplify the solution and enhance its generality, crop row detection is defined as a process of approximating curves. Polynomial parameter learning is adopted to constrain the parameters of crop row shapes, and utilise a model built on the Transformer architecture to learn the elongated structures and global context of crop rows, achieving end-to-end output of crop row shape parameters. The proposed approach has achieved rapid and excellent detection results in complex field environments, even in the presence of curved crop rows.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"246 ","pages":"Pages 13-25"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient crop row detection using transformer-based parameter prediction\",\"authors\":\"Zhiming Guo ,&nbsp;Longzhe Quan ,&nbsp;Deng Sun ,&nbsp;Zhaoxia Lou ,&nbsp;Yuhang Geng ,&nbsp;Tianbao Chen ,&nbsp;Yi Xue ,&nbsp;Jinbing He ,&nbsp;Pengbiao Hou ,&nbsp;Chuan Wang ,&nbsp;Jiakang Wang\",\"doi\":\"10.1016/j.biosystemseng.2024.07.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The detection of crop rows is crucial for achieving visual navigation and is one of the key technologies for enabling autonomous management of maize fields. However, the current mainstream approach to maize crop row detection often involves two steps - feature extraction followed by post-processing. While useful, this method is inefficient, and the heuristic rules designed by humans limit the scalability of these methods. To simplify the solution and enhance its generality, crop row detection is defined as a process of approximating curves. Polynomial parameter learning is adopted to constrain the parameters of crop row shapes, and utilise a model built on the Transformer architecture to learn the elongated structures and global context of crop rows, achieving end-to-end output of crop row shape parameters. The proposed approach has achieved rapid and excellent detection results in complex field environments, even in the presence of curved crop rows.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":\"246 \",\"pages\":\"Pages 13-25\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024001697\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001697","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

作物行的检测对于实现视觉导航至关重要,也是实现玉米田自主管理的关键技术之一。然而,目前玉米作物行检测的主流方法通常包括两个步骤--特征提取和后处理。这种方法虽然有用,但效率低下,而且人类设计的启发式规则限制了这些方法的可扩展性。为了简化解决方案并增强其通用性,作物行检测被定义为曲线逼近的过程。采用多项式参数学习来约束作物行形状参数,并利用建立在 Transformer 架构上的模型来学习作物行的细长结构和全局背景,实现作物行形状参数的端到端输出。所提出的方法在复杂的田间环境中取得了快速而出色的检测结果,即使在作物行弯曲的情况下也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient crop row detection using transformer-based parameter prediction

The detection of crop rows is crucial for achieving visual navigation and is one of the key technologies for enabling autonomous management of maize fields. However, the current mainstream approach to maize crop row detection often involves two steps - feature extraction followed by post-processing. While useful, this method is inefficient, and the heuristic rules designed by humans limit the scalability of these methods. To simplify the solution and enhance its generality, crop row detection is defined as a process of approximating curves. Polynomial parameter learning is adopted to constrain the parameters of crop row shapes, and utilise a model built on the Transformer architecture to learn the elongated structures and global context of crop rows, achieving end-to-end output of crop row shape parameters. The proposed approach has achieved rapid and excellent detection results in complex field environments, even in the presence of curved crop rows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
An application oriented all-round intelligent weeding machine with enhanced YOLOv5 Characterising vibration patterns of winter jujube trees to optimise automated fruit harvesting UAV multispectral remote sensing for agriculture: A comparative study of radiometric correction methods under varying illumination conditions Effects of polyphenol-rich extracts and compounds on methane and ammonia emissions from pig slurry during 28-day incubation Optimising maize threshing process with temporal proximity soft actor-critic deep reinforcement learning algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1