对工业废水中新出现的污染物和重金属进行植物修复:生物经济的可持续绿色方法

Q1 Environmental Science Bioresource Technology Reports Pub Date : 2024-08-02 DOI:10.1016/j.biteb.2024.101920
{"title":"对工业废水中新出现的污染物和重金属进行植物修复:生物经济的可持续绿色方法","authors":"","doi":"10.1016/j.biteb.2024.101920","DOIUrl":null,"url":null,"abstract":"<div><p>Phycoremediation of emerging pollutants and heavy metals for treatment technologies is attracted mainly due to low-energy, cost-effective, sustainable, and eco-friendly solutions. Microalgae appear to be a promising candidate for pollutant biosorption and bioaccumulation, with excellent removal potential. However, the right selection of microalgae species for the degradation of specific pollutants remains a major challenge. Phycoremediation could be combined with the existing industrial treatment processes of wastewater as an effective secondary or tertiary stage process, which would enhance the treatment efficiency. This review focuses on the recent trends in bioremediation of wastewater treatment for heavy metals and emerging contaminants' removal, factors influencing pollutant removal, and mechanisms of pollutant degradation. Microalgae efficiently eliminated nutrients along with heavy metals and emerging pollutants up to 83–96 %, 43–100 %, and 18–100 % from different wastewaters. Furthermore, valorization of microalgal biomass for the bioeconomy, challenges associated with wastewater cultivation, and prospects are discussed. This review aims to provide useful information that will aid in the development of commercially viable technological interventions for microalgae-based bioremediation processes in sustainable environments.</p></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phycoremediation of emerging contaminants and heavy metals from industrial wastewater: A sustainable green approach for bioeconomy\",\"authors\":\"\",\"doi\":\"10.1016/j.biteb.2024.101920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phycoremediation of emerging pollutants and heavy metals for treatment technologies is attracted mainly due to low-energy, cost-effective, sustainable, and eco-friendly solutions. Microalgae appear to be a promising candidate for pollutant biosorption and bioaccumulation, with excellent removal potential. However, the right selection of microalgae species for the degradation of specific pollutants remains a major challenge. Phycoremediation could be combined with the existing industrial treatment processes of wastewater as an effective secondary or tertiary stage process, which would enhance the treatment efficiency. This review focuses on the recent trends in bioremediation of wastewater treatment for heavy metals and emerging contaminants' removal, factors influencing pollutant removal, and mechanisms of pollutant degradation. Microalgae efficiently eliminated nutrients along with heavy metals and emerging pollutants up to 83–96 %, 43–100 %, and 18–100 % from different wastewaters. Furthermore, valorization of microalgal biomass for the bioeconomy, challenges associated with wastewater cultivation, and prospects are discussed. This review aims to provide useful information that will aid in the development of commercially viable technological interventions for microalgae-based bioremediation processes in sustainable environments.</p></div>\",\"PeriodicalId\":8947,\"journal\":{\"name\":\"Bioresource Technology Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioresource Technology Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589014X24001610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X24001610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

对新出现的污染物和重金属进行植物修复的处理技术之所以受到青睐,主要是因为其具有低能耗、成本效益高、可持续和生态友好的解决方案。微藻似乎是污染物生物吸附和生物累积的理想候选者,具有极佳的去除潜力。然而,如何选择合适的微藻品种来降解特定污染物仍然是一个重大挑战。植物修复可与现有的废水工业处理过程相结合,作为有效的二级或三级处理过程,从而提高处理效率。本综述重点介绍了废水处理生物修复法去除重金属和新污染物的最新趋势、影响污染物去除的因素以及污染物降解机制。微藻对不同废水中营养物质、重金属和新污染物的有效去除率分别达到 83%-96%、43%-100% 和 18%-100%。此外,还讨论了微藻生物质在生物经济中的价值、与废水培养相关的挑战和前景。本综述旨在提供有用信息,帮助在可持续环境中开发基于微藻的生物修复过程的商业可行技术干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phycoremediation of emerging contaminants and heavy metals from industrial wastewater: A sustainable green approach for bioeconomy

Phycoremediation of emerging pollutants and heavy metals for treatment technologies is attracted mainly due to low-energy, cost-effective, sustainable, and eco-friendly solutions. Microalgae appear to be a promising candidate for pollutant biosorption and bioaccumulation, with excellent removal potential. However, the right selection of microalgae species for the degradation of specific pollutants remains a major challenge. Phycoremediation could be combined with the existing industrial treatment processes of wastewater as an effective secondary or tertiary stage process, which would enhance the treatment efficiency. This review focuses on the recent trends in bioremediation of wastewater treatment for heavy metals and emerging contaminants' removal, factors influencing pollutant removal, and mechanisms of pollutant degradation. Microalgae efficiently eliminated nutrients along with heavy metals and emerging pollutants up to 83–96 %, 43–100 %, and 18–100 % from different wastewaters. Furthermore, valorization of microalgal biomass for the bioeconomy, challenges associated with wastewater cultivation, and prospects are discussed. This review aims to provide useful information that will aid in the development of commercially viable technological interventions for microalgae-based bioremediation processes in sustainable environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
期刊最新文献
Nanocellulose from Mankamana-3 corncob biomass: Synthesis, characterization, surface modification and potential applications Insides into molecular structural elucidation on the pesticidal and herbicidal potency of AD biogas slurry The potential of seaweed biochar and fly ash amendments in enhancing vermi-degradation and the fertilizer value of cow manure, wastepaper-based vermicompost Bio-flocculation: A cost effective and energy efficient harvesting technique for algal biofuel production and wastewater treatment Microbial transformation of lignite into methane: Insights from anaerobic-activated sludge systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1