Khandaker Noman , Shun Wang , Ke Feng , Yongbo Li , Wang Xinyue
{"title":"加权平方包络分散熵作为旋转机械动态健康监测的非线性测量方法","authors":"Khandaker Noman , Shun Wang , Ke Feng , Yongbo Li , Wang Xinyue","doi":"10.1016/j.ndteint.2024.103207","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of nondestructive testing and evaluation, dispersion entropy (DisE) stands out as a promising dynamic nonlinear health monitoring measure for rotating machineries. However, in high-noise scenarios, transient impulses linked to rotating machinery faults often get submerged under the noise component present in the collected vibration signal. As a result, DisE not only fails to detect the presence of a fault at the earliest stage of inception but also performs poorly in tracking the progression of the incepted fault. Aiming at overcoming the limitations of DisE in dynamic health monitoring of rotating machineries, in this paper, impulses corresponding to a fault is extracted by suppressing the unnecessary noise component by weighting the squared envelope of the collected vibration signal. Due to the application of weighted squared envelope in calculating the DisE, the proposed measure is termed as weighted squared envelope dispersion entropy (WSEDisE). Effectiveness of WSEDisE in dynamic health monitoring of rotating machineries is verified by two different experimental run to failure data collected from rolling element bearings and spur gears. Experimental results show that WSEDisE not only overcomes the weaknesses of original DisE but also demonstrates better performance than conventional entropy-based methods such as permutation entropy (PE) and advanced DisE based method namely multiscale DisE (MDisE).</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"147 ","pages":"Article 103207"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted squared envelope dispersion entropy as nonlinear measure for dynamic health monitoring of rotating machineries\",\"authors\":\"Khandaker Noman , Shun Wang , Ke Feng , Yongbo Li , Wang Xinyue\",\"doi\":\"10.1016/j.ndteint.2024.103207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of nondestructive testing and evaluation, dispersion entropy (DisE) stands out as a promising dynamic nonlinear health monitoring measure for rotating machineries. However, in high-noise scenarios, transient impulses linked to rotating machinery faults often get submerged under the noise component present in the collected vibration signal. As a result, DisE not only fails to detect the presence of a fault at the earliest stage of inception but also performs poorly in tracking the progression of the incepted fault. Aiming at overcoming the limitations of DisE in dynamic health monitoring of rotating machineries, in this paper, impulses corresponding to a fault is extracted by suppressing the unnecessary noise component by weighting the squared envelope of the collected vibration signal. Due to the application of weighted squared envelope in calculating the DisE, the proposed measure is termed as weighted squared envelope dispersion entropy (WSEDisE). Effectiveness of WSEDisE in dynamic health monitoring of rotating machineries is verified by two different experimental run to failure data collected from rolling element bearings and spur gears. Experimental results show that WSEDisE not only overcomes the weaknesses of original DisE but also demonstrates better performance than conventional entropy-based methods such as permutation entropy (PE) and advanced DisE based method namely multiscale DisE (MDisE).</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"147 \",\"pages\":\"Article 103207\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001725\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001725","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Weighted squared envelope dispersion entropy as nonlinear measure for dynamic health monitoring of rotating machineries
In the context of nondestructive testing and evaluation, dispersion entropy (DisE) stands out as a promising dynamic nonlinear health monitoring measure for rotating machineries. However, in high-noise scenarios, transient impulses linked to rotating machinery faults often get submerged under the noise component present in the collected vibration signal. As a result, DisE not only fails to detect the presence of a fault at the earliest stage of inception but also performs poorly in tracking the progression of the incepted fault. Aiming at overcoming the limitations of DisE in dynamic health monitoring of rotating machineries, in this paper, impulses corresponding to a fault is extracted by suppressing the unnecessary noise component by weighting the squared envelope of the collected vibration signal. Due to the application of weighted squared envelope in calculating the DisE, the proposed measure is termed as weighted squared envelope dispersion entropy (WSEDisE). Effectiveness of WSEDisE in dynamic health monitoring of rotating machineries is verified by two different experimental run to failure data collected from rolling element bearings and spur gears. Experimental results show that WSEDisE not only overcomes the weaknesses of original DisE but also demonstrates better performance than conventional entropy-based methods such as permutation entropy (PE) and advanced DisE based method namely multiscale DisE (MDisE).
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.