尼日利亚北部光伏能源开发的 SWOT 分析方法

Anas A. Bisu , Tariq G. Ahmed , Umar S. Ahmad , Abubakar D. Maiwada
{"title":"尼日利亚北部光伏能源开发的 SWOT 分析方法","authors":"Anas A. Bisu ,&nbsp;Tariq G. Ahmed ,&nbsp;Umar S. Ahmad ,&nbsp;Abubakar D. Maiwada","doi":"10.1016/j.cles.2024.100128","DOIUrl":null,"url":null,"abstract":"<div><p>This research employs a comprehensive Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis to investigate the advancement of photovoltaic (PV) energy in Northern Nigeria. The study delves into the intricacies of introducing PV systems within the context of economic challenges, including issues such as currency volatility and inflation, which amplify costs and impede capital investments. Environmental factors, such as dust and sandstorms, are identified as obstacles diminishing the efficiency of solar panels. Additionally, security concerns in remote areas elevate operational costs and influence investment decisions. This paper proposes effective mitigation strategies, encompassing widespread public awareness campaigns to augment market engagement, the establishment of mini-grid systems for enhanced energy distribution, customised on-the-job training programs to foster local expertise in PV technology, and the utilisation of micro-grid systems as experimental grounds for regulatory and policy testing. By synthesising these components, the study offers a comprehensive overview of the prerequisites essential for the successful proliferation of PV energy in Northern Nigeria. Emphasis is placed on the potential for solar energy to significantly contribute to the region's sustainable development and achieve energy independence when the identified strength, and opportunities are exploited. The key strength identified are the average Global horizontal irradiance (GHI) of 5.436 kWh/m<sup>2</sup>, Direct Normal Irradiance (DNI) of 1534–1680 kWh/m<sup>2</sup>, Levelised Cost of Electricity (LCoE) of $ 0.1, and an opportunity to fully utilise the over $ 7.88 million grant authorised by the African Development Bank (AfDB) from the Sustainable Energy Fund for Africa.</p></div>","PeriodicalId":100252,"journal":{"name":"Cleaner Energy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772783124000220/pdfft?md5=5ad76d8050fa4517244a11767e5a1f55&pid=1-s2.0-S2772783124000220-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A SWOT Analysis Approach for the Development of Photovoltaic (PV) Energy in Northern Nigeria\",\"authors\":\"Anas A. Bisu ,&nbsp;Tariq G. Ahmed ,&nbsp;Umar S. Ahmad ,&nbsp;Abubakar D. Maiwada\",\"doi\":\"10.1016/j.cles.2024.100128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research employs a comprehensive Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis to investigate the advancement of photovoltaic (PV) energy in Northern Nigeria. The study delves into the intricacies of introducing PV systems within the context of economic challenges, including issues such as currency volatility and inflation, which amplify costs and impede capital investments. Environmental factors, such as dust and sandstorms, are identified as obstacles diminishing the efficiency of solar panels. Additionally, security concerns in remote areas elevate operational costs and influence investment decisions. This paper proposes effective mitigation strategies, encompassing widespread public awareness campaigns to augment market engagement, the establishment of mini-grid systems for enhanced energy distribution, customised on-the-job training programs to foster local expertise in PV technology, and the utilisation of micro-grid systems as experimental grounds for regulatory and policy testing. By synthesising these components, the study offers a comprehensive overview of the prerequisites essential for the successful proliferation of PV energy in Northern Nigeria. Emphasis is placed on the potential for solar energy to significantly contribute to the region's sustainable development and achieve energy independence when the identified strength, and opportunities are exploited. The key strength identified are the average Global horizontal irradiance (GHI) of 5.436 kWh/m<sup>2</sup>, Direct Normal Irradiance (DNI) of 1534–1680 kWh/m<sup>2</sup>, Levelised Cost of Electricity (LCoE) of $ 0.1, and an opportunity to fully utilise the over $ 7.88 million grant authorised by the African Development Bank (AfDB) from the Sustainable Energy Fund for Africa.</p></div>\",\"PeriodicalId\":100252,\"journal\":{\"name\":\"Cleaner Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772783124000220/pdfft?md5=5ad76d8050fa4517244a11767e5a1f55&pid=1-s2.0-S2772783124000220-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cleaner Energy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772783124000220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Energy Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772783124000220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用全面的优势、劣势、机会和威胁 (SWOT) 分析方法,调查尼日利亚北部光伏能源的发展情况。研究深入探讨了在经济挑战背景下引入光伏系统的复杂性,包括货币波动和通货膨胀等问题,这些问题放大了成本并阻碍了资本投资。沙尘暴等环境因素被认为是降低太阳能电池板效率的障碍。此外,偏远地区的安全问题也会提高运营成本,影响投资决策。本文提出了有效的缓解策略,包括开展广泛的公众宣传活动以提高市场参与度,建立微型电网系统以加强能源分配,定制在职培训计划以培养当地的光伏技术专业人才,以及利用微电网系统作为监管和政策测试的实验场地。通过综合这些内容,本研究全面概述了在尼日利亚北部成功推广光伏能源所必需的先决条件。研究强调了太阳能的潜力,即在利用已确定的优势和机遇的情况下,太阳能可极大地促进该地区的可持续发展并实现能源独立。已确定的主要优势包括:平均全球水平辐照度 (GHI) 为 5.436 kWh/m2,直接正常辐照度 (DNI) 为 1534-1680 kWh/m2,平准化电力成本 (LCoE) 为 0.1 美元,以及充分利用非洲开发银行 (AfDB) 从非洲可持续能源基金 (Sustainable Energy Fund for Africa) 批准的 788 万美元赠款的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A SWOT Analysis Approach for the Development of Photovoltaic (PV) Energy in Northern Nigeria

This research employs a comprehensive Strengths, Weaknesses, Opportunities, Threats (SWOT) analysis to investigate the advancement of photovoltaic (PV) energy in Northern Nigeria. The study delves into the intricacies of introducing PV systems within the context of economic challenges, including issues such as currency volatility and inflation, which amplify costs and impede capital investments. Environmental factors, such as dust and sandstorms, are identified as obstacles diminishing the efficiency of solar panels. Additionally, security concerns in remote areas elevate operational costs and influence investment decisions. This paper proposes effective mitigation strategies, encompassing widespread public awareness campaigns to augment market engagement, the establishment of mini-grid systems for enhanced energy distribution, customised on-the-job training programs to foster local expertise in PV technology, and the utilisation of micro-grid systems as experimental grounds for regulatory and policy testing. By synthesising these components, the study offers a comprehensive overview of the prerequisites essential for the successful proliferation of PV energy in Northern Nigeria. Emphasis is placed on the potential for solar energy to significantly contribute to the region's sustainable development and achieve energy independence when the identified strength, and opportunities are exploited. The key strength identified are the average Global horizontal irradiance (GHI) of 5.436 kWh/m2, Direct Normal Irradiance (DNI) of 1534–1680 kWh/m2, Levelised Cost of Electricity (LCoE) of $ 0.1, and an opportunity to fully utilise the over $ 7.88 million grant authorised by the African Development Bank (AfDB) from the Sustainable Energy Fund for Africa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Simulation of a system to simultaneously recover CO2 and sweet carbon-neutral natural gas from wet natural gas: A delve into process inputs and units performances Optimizing a hybrid wind-solar-biomass system with battery and hydrogen storage using generic algorithm-particle swarm optimization for performance assessment Design and implementation of a control system for multifunctional applications of a Battery Energy Storage System (BESS) in a power system network Optimizing textile dyeing and finishing for improved energy efficiency and sustainability in fleece knitted fabrics Techno economic study of floating solar photovoltaic project in Indonesia using RETscreen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1