基于机器学习的高熵合金涂层不锈钢杨氏模量预测

N. Radhika , M. Sabarinathan , S. Ragunath , Adeolu Adesoji Adediran , Tien-Chien Jen
{"title":"基于机器学习的高熵合金涂层不锈钢杨氏模量预测","authors":"N. Radhika ,&nbsp;M. Sabarinathan ,&nbsp;S. Ragunath ,&nbsp;Adeolu Adesoji Adediran ,&nbsp;Tien-Chien Jen","doi":"10.1016/j.rinma.2024.100607","DOIUrl":null,"url":null,"abstract":"<div><p>The High Entropy Alloy (HEA) coatings exhibit diverse properties contingent upon their composition and microstructure, addressing current industrial requirements. Machine Learning (ML) regression emerges as a proficient solution for predicting the properties of HEA coatings, offering a significant reduction in experimental work. The ML regressions including Support Vector Regression (SVR), Gaussian Process Regression (GPR), Ridge Regression (RR), and Polynomial Regression (PR), are effectively employed to predict Young's modulus of HEA coated Stainless Steel (SS) through a significant database. The statistical responses of the developed regression models are analyzed through evaluation indices of Coefficient of determination (R<sup>2</sup>), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Among the regression models, the 2-degree PR model stands alone with a high prediction accuracy of R<sup>2</sup>-0.95, MAE-16.12, and RMSE-21.53. The 2-degree PR model demonstrates a significant correlation between the predicted and experimental Young's modulus, contributing to the accurate prediction of unknown Young's modulus of the HEA-coated SS. The prediction of Young's modulus by the PR model is more reliable, as proved by an error percentile of ±4.76 %, compared to the experimental values of Young's modulus.</p></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"23 ","pages":"Article 100607"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590048X24000815/pdfft?md5=d0b494a6bef9eb04c5265ecb6382a6aa&pid=1-s2.0-S2590048X24000815-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Machine learning based prediction of Young's modulus of stainless steel coated with high entropy alloys\",\"authors\":\"N. Radhika ,&nbsp;M. Sabarinathan ,&nbsp;S. Ragunath ,&nbsp;Adeolu Adesoji Adediran ,&nbsp;Tien-Chien Jen\",\"doi\":\"10.1016/j.rinma.2024.100607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The High Entropy Alloy (HEA) coatings exhibit diverse properties contingent upon their composition and microstructure, addressing current industrial requirements. Machine Learning (ML) regression emerges as a proficient solution for predicting the properties of HEA coatings, offering a significant reduction in experimental work. The ML regressions including Support Vector Regression (SVR), Gaussian Process Regression (GPR), Ridge Regression (RR), and Polynomial Regression (PR), are effectively employed to predict Young's modulus of HEA coated Stainless Steel (SS) through a significant database. The statistical responses of the developed regression models are analyzed through evaluation indices of Coefficient of determination (R<sup>2</sup>), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Among the regression models, the 2-degree PR model stands alone with a high prediction accuracy of R<sup>2</sup>-0.95, MAE-16.12, and RMSE-21.53. The 2-degree PR model demonstrates a significant correlation between the predicted and experimental Young's modulus, contributing to the accurate prediction of unknown Young's modulus of the HEA-coated SS. The prediction of Young's modulus by the PR model is more reliable, as proved by an error percentile of ±4.76 %, compared to the experimental values of Young's modulus.</p></div>\",\"PeriodicalId\":101087,\"journal\":{\"name\":\"Results in Materials\",\"volume\":\"23 \",\"pages\":\"Article 100607\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590048X24000815/pdfft?md5=d0b494a6bef9eb04c5265ecb6382a6aa&pid=1-s2.0-S2590048X24000815-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590048X24000815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590048X24000815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(HEA)涂层因其成分和微观结构的不同而表现出多种特性,可满足当前的工业要求。机器学习(ML)回归是预测高熵合金(HEA)涂层性能的有效解决方案,可显著减少实验工作量。支持向量回归(SVR)、高斯过程回归(GPR)、岭回归(RR)和多项式回归(PR)等 ML 回归被有效地用于通过重要数据库预测 HEA 涂层不锈钢(SS)的杨氏模量。通过判定系数(R2)、平均绝对误差(MAE)和均方根误差(RMSE)等评价指标分析了所建立回归模型的统计响应。在回归模型中,2 度 PR 模型以 R2-0.95 、MAE-16.12 和 RMSE-21.53 的高预测精度独占鳌头。2 度 PR 模型显示了预测杨氏模量与实验杨氏模量之间的显著相关性,有助于准确预测 HEA 涂层 SS 的未知杨氏模量。与杨氏模量的实验值相比,PR 模型对杨氏模量的预测更可靠,误差百分位数为 ±4.76 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning based prediction of Young's modulus of stainless steel coated with high entropy alloys

The High Entropy Alloy (HEA) coatings exhibit diverse properties contingent upon their composition and microstructure, addressing current industrial requirements. Machine Learning (ML) regression emerges as a proficient solution for predicting the properties of HEA coatings, offering a significant reduction in experimental work. The ML regressions including Support Vector Regression (SVR), Gaussian Process Regression (GPR), Ridge Regression (RR), and Polynomial Regression (PR), are effectively employed to predict Young's modulus of HEA coated Stainless Steel (SS) through a significant database. The statistical responses of the developed regression models are analyzed through evaluation indices of Coefficient of determination (R2), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). Among the regression models, the 2-degree PR model stands alone with a high prediction accuracy of R2-0.95, MAE-16.12, and RMSE-21.53. The 2-degree PR model demonstrates a significant correlation between the predicted and experimental Young's modulus, contributing to the accurate prediction of unknown Young's modulus of the HEA-coated SS. The prediction of Young's modulus by the PR model is more reliable, as proved by an error percentile of ±4.76 %, compared to the experimental values of Young's modulus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
期刊最新文献
First-principles calculations to investigate the bulk, electronic, optical and thermoelectric properties of BaGe2As2 and BaGe2P2 alloys Impact of PECVD deposition on dielectric charge and passivation for n-GaN/SiOx interfaces Development of biobased films incorporated with an antimicrobial agent and reinforced with Stipa obtusa cellulose microfibers, via tape casting Development and evaluation of mixture formulations to enhance concrete resistance to microbial-induced corrosion Investigation of externally toothed parts forming using ballizing technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1