Jose-Luis Cabra López , Carlos Parra , Gonzalo Forero
{"title":"使用心电图性识别作为选择性参数的心电图深度学习用户识别架构","authors":"Jose-Luis Cabra López , Carlos Parra , Gonzalo Forero","doi":"10.1016/j.imu.2024.101563","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><p>Human user authentication can be implemented by token-, keyword-, or identity-based mechanisms for digital environment session entry (i.e., smartphones, platforms with log-in). Physiological signals, such as ECG, have shown discriminative properties for user identity recognition. Due to ECG hidden nature, it is resilient to public trait exposition, light/noise saturation, or eavesdropping in contrast to fingerprint, facial, voice, or password approaches. ECG might fill those gaps toward a cooperative authentication environment.</p></div><div><h3>Methods:</h3><p>This paper proposes a Deep Learning identification scenario in which the inclusion of sex recognition directs the input sample toward a sex-specialized identity classification model, simplifying the discrimination space for each model. The architecture proposed could be suitable for large populations. Our scheme worked with an ECG three-axis pseudo-orthogonal configuration in which each axis is transformed into a time-frequency space. Additionally, we combine each lead matrix in an RGB image, joining the contribution of each wavelet waveform.</p></div><div><h3>Results:</h3><p>Our results suggest that it is possible to identify people by using RGB wavelet representations, achieving a classification average of 99.97%. In addition, the inclusion of the sex category for our identification purpose does not significantly affect the classification performance, making it a feasible solution for systems with a larger population.</p></div><div><h3>Conclusions:</h3><p>With the features of our database, we have evidence that it is possible to recognize a person’s identity using an ECG sex recognition module through our proposed architecture.</p></div>","PeriodicalId":13953,"journal":{"name":"Informatics in Medicine Unlocked","volume":"50 ","pages":"Article 101563"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352914824001199/pdfft?md5=7033d19b6ac3ea3a62bec9d541c40587&pid=1-s2.0-S2352914824001199-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An ECG Deep Learning user identification architecture using ECG sex recognition as a selective parameter\",\"authors\":\"Jose-Luis Cabra López , Carlos Parra , Gonzalo Forero\",\"doi\":\"10.1016/j.imu.2024.101563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background:</h3><p>Human user authentication can be implemented by token-, keyword-, or identity-based mechanisms for digital environment session entry (i.e., smartphones, platforms with log-in). Physiological signals, such as ECG, have shown discriminative properties for user identity recognition. Due to ECG hidden nature, it is resilient to public trait exposition, light/noise saturation, or eavesdropping in contrast to fingerprint, facial, voice, or password approaches. ECG might fill those gaps toward a cooperative authentication environment.</p></div><div><h3>Methods:</h3><p>This paper proposes a Deep Learning identification scenario in which the inclusion of sex recognition directs the input sample toward a sex-specialized identity classification model, simplifying the discrimination space for each model. The architecture proposed could be suitable for large populations. Our scheme worked with an ECG three-axis pseudo-orthogonal configuration in which each axis is transformed into a time-frequency space. Additionally, we combine each lead matrix in an RGB image, joining the contribution of each wavelet waveform.</p></div><div><h3>Results:</h3><p>Our results suggest that it is possible to identify people by using RGB wavelet representations, achieving a classification average of 99.97%. In addition, the inclusion of the sex category for our identification purpose does not significantly affect the classification performance, making it a feasible solution for systems with a larger population.</p></div><div><h3>Conclusions:</h3><p>With the features of our database, we have evidence that it is possible to recognize a person’s identity using an ECG sex recognition module through our proposed architecture.</p></div>\",\"PeriodicalId\":13953,\"journal\":{\"name\":\"Informatics in Medicine Unlocked\",\"volume\":\"50 \",\"pages\":\"Article 101563\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352914824001199/pdfft?md5=7033d19b6ac3ea3a62bec9d541c40587&pid=1-s2.0-S2352914824001199-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informatics in Medicine Unlocked\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352914824001199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informatics in Medicine Unlocked","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352914824001199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
An ECG Deep Learning user identification architecture using ECG sex recognition as a selective parameter
Background:
Human user authentication can be implemented by token-, keyword-, or identity-based mechanisms for digital environment session entry (i.e., smartphones, platforms with log-in). Physiological signals, such as ECG, have shown discriminative properties for user identity recognition. Due to ECG hidden nature, it is resilient to public trait exposition, light/noise saturation, or eavesdropping in contrast to fingerprint, facial, voice, or password approaches. ECG might fill those gaps toward a cooperative authentication environment.
Methods:
This paper proposes a Deep Learning identification scenario in which the inclusion of sex recognition directs the input sample toward a sex-specialized identity classification model, simplifying the discrimination space for each model. The architecture proposed could be suitable for large populations. Our scheme worked with an ECG three-axis pseudo-orthogonal configuration in which each axis is transformed into a time-frequency space. Additionally, we combine each lead matrix in an RGB image, joining the contribution of each wavelet waveform.
Results:
Our results suggest that it is possible to identify people by using RGB wavelet representations, achieving a classification average of 99.97%. In addition, the inclusion of the sex category for our identification purpose does not significantly affect the classification performance, making it a feasible solution for systems with a larger population.
Conclusions:
With the features of our database, we have evidence that it is possible to recognize a person’s identity using an ECG sex recognition module through our proposed architecture.
期刊介绍:
Informatics in Medicine Unlocked (IMU) is an international gold open access journal covering a broad spectrum of topics within medical informatics, including (but not limited to) papers focusing on imaging, pathology, teledermatology, public health, ophthalmological, nursing and translational medicine informatics. The full papers that are published in the journal are accessible to all who visit the website.