Philippa E. Pattison , Garry L. Robins , Tom A.B. Snijders , Peng Wang
{"title":"指数随机图模型和垂三角统计","authors":"Philippa E. Pattison , Garry L. Robins , Tom A.B. Snijders , Peng Wang","doi":"10.1016/j.socnet.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>The paper builds on the framework proposed by Pattison and Snijders (2012) for specifying exponential random graph models (ERGMs) for social networks. We briefly review the two-dimensional hierarchy of potential dependence structures for network tie variables that they outlined and provide proofs of the relationships among the model forms and of the nature of their sufficient statistics, noting that models in the hierarchy have the potential to reflect the outcome of processes of cohesion, closure, boundary and bridge formation and path creation over short or longer network distances. We then focus on the so-called <em>partial inclusion</em> dependence assumptions among network tie variables and the <em>pendant-triangle</em>, or <em>paw</em>, statistics to which they give rise, and illustrate their application in an empirical setting. We argue that the partial inclusion assumption leads to models that can reflect processes of boundary and bridge formation and that the model hierarchy provides a broad and useful framework for the statistical analysis of network data. We demonstrate in the chosen setting that pendant-triangle (or paw) effects, in particular, lead to a marked improvement in goodness-of-fit and hence add a potentially valuable capacity for modelling social networks.</p></div>","PeriodicalId":48353,"journal":{"name":"Social Networks","volume":"79 ","pages":"Pages 187-197"},"PeriodicalIF":2.9000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378873324000406/pdfft?md5=4736b23e85701c944f6c79997f624b51&pid=1-s2.0-S0378873324000406-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Exponential random graph models and pendant-triangle statistics\",\"authors\":\"Philippa E. Pattison , Garry L. Robins , Tom A.B. Snijders , Peng Wang\",\"doi\":\"10.1016/j.socnet.2024.07.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper builds on the framework proposed by Pattison and Snijders (2012) for specifying exponential random graph models (ERGMs) for social networks. We briefly review the two-dimensional hierarchy of potential dependence structures for network tie variables that they outlined and provide proofs of the relationships among the model forms and of the nature of their sufficient statistics, noting that models in the hierarchy have the potential to reflect the outcome of processes of cohesion, closure, boundary and bridge formation and path creation over short or longer network distances. We then focus on the so-called <em>partial inclusion</em> dependence assumptions among network tie variables and the <em>pendant-triangle</em>, or <em>paw</em>, statistics to which they give rise, and illustrate their application in an empirical setting. We argue that the partial inclusion assumption leads to models that can reflect processes of boundary and bridge formation and that the model hierarchy provides a broad and useful framework for the statistical analysis of network data. We demonstrate in the chosen setting that pendant-triangle (or paw) effects, in particular, lead to a marked improvement in goodness-of-fit and hence add a potentially valuable capacity for modelling social networks.</p></div>\",\"PeriodicalId\":48353,\"journal\":{\"name\":\"Social Networks\",\"volume\":\"79 \",\"pages\":\"Pages 187-197\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378873324000406/pdfft?md5=4736b23e85701c944f6c79997f624b51&pid=1-s2.0-S0378873324000406-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Networks\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378873324000406\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANTHROPOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Networks","FirstCategoryId":"90","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378873324000406","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANTHROPOLOGY","Score":null,"Total":0}
Exponential random graph models and pendant-triangle statistics
The paper builds on the framework proposed by Pattison and Snijders (2012) for specifying exponential random graph models (ERGMs) for social networks. We briefly review the two-dimensional hierarchy of potential dependence structures for network tie variables that they outlined and provide proofs of the relationships among the model forms and of the nature of their sufficient statistics, noting that models in the hierarchy have the potential to reflect the outcome of processes of cohesion, closure, boundary and bridge formation and path creation over short or longer network distances. We then focus on the so-called partial inclusion dependence assumptions among network tie variables and the pendant-triangle, or paw, statistics to which they give rise, and illustrate their application in an empirical setting. We argue that the partial inclusion assumption leads to models that can reflect processes of boundary and bridge formation and that the model hierarchy provides a broad and useful framework for the statistical analysis of network data. We demonstrate in the chosen setting that pendant-triangle (or paw) effects, in particular, lead to a marked improvement in goodness-of-fit and hence add a potentially valuable capacity for modelling social networks.
期刊介绍:
Social Networks is an interdisciplinary and international quarterly. It provides a common forum for representatives of anthropology, sociology, history, social psychology, political science, human geography, biology, economics, communications science and other disciplines who share an interest in the study of the empirical structure of social relations and associations that may be expressed in network form. It publishes both theoretical and substantive papers. Critical reviews of major theoretical or methodological approaches using the notion of networks in the analysis of social behaviour are also included, as are reviews of recent books dealing with social networks and social structure.