Xinzi Yu , Changyue Liu , Liqian Wang , Tianyu Li , Lingxin Yuan , Jiping Yang , Rui Xiao , Zhijian Wang
{"title":"具有可交换硼酸酯键的可再编程液晶弹性体的三维打印技术","authors":"Xinzi Yu , Changyue Liu , Liqian Wang , Tianyu Li , Lingxin Yuan , Jiping Yang , Rui Xiao , Zhijian Wang","doi":"10.1016/j.giant.2024.100331","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid crystal elastomers (LCEs) are a kind of soft actuating materials with large reversible deformation ability, which can work as the “motor” to exhibit complex deformations and drive the locomotion of soft robots. The deformation of LCEs depends on the three-dimensional (3D) shape of whole structure and alignment patterns of mesogens. Various methods have been employed to fabricate the LCE structure with desired shapes and mesogen alignments. However, conventional 3D printed LCEs require continuous thermal energy input to maintain their actuated shapes. The LCEs cannot be reprocessed and reprogrammed once cured. Herein, we introduce dynamic boronic ester bonds into the ink, with which the printed LCE structures are capable of being reprogrammed from polydomain into monodomain state and vice versa. We further explore the effects of printing parameters and content of dynamic covalent bonds on the actuation performance and reprogramming ability. The actuated shape could be well predicted with finite element method. The dynamic printable LCEs developed here offer new strategy and large design space for LCE structures.</p></div>","PeriodicalId":34151,"journal":{"name":"GIANT","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654252400095X/pdfft?md5=c994d94a82f2721a28403c1b16aa4d93&pid=1-s2.0-S266654252400095X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"3D printing of reprogrammable liquid crystal elastomers with exchangeable boronic ester bonds\",\"authors\":\"Xinzi Yu , Changyue Liu , Liqian Wang , Tianyu Li , Lingxin Yuan , Jiping Yang , Rui Xiao , Zhijian Wang\",\"doi\":\"10.1016/j.giant.2024.100331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liquid crystal elastomers (LCEs) are a kind of soft actuating materials with large reversible deformation ability, which can work as the “motor” to exhibit complex deformations and drive the locomotion of soft robots. The deformation of LCEs depends on the three-dimensional (3D) shape of whole structure and alignment patterns of mesogens. Various methods have been employed to fabricate the LCE structure with desired shapes and mesogen alignments. However, conventional 3D printed LCEs require continuous thermal energy input to maintain their actuated shapes. The LCEs cannot be reprocessed and reprogrammed once cured. Herein, we introduce dynamic boronic ester bonds into the ink, with which the printed LCE structures are capable of being reprogrammed from polydomain into monodomain state and vice versa. We further explore the effects of printing parameters and content of dynamic covalent bonds on the actuation performance and reprogramming ability. The actuated shape could be well predicted with finite element method. The dynamic printable LCEs developed here offer new strategy and large design space for LCE structures.</p></div>\",\"PeriodicalId\":34151,\"journal\":{\"name\":\"GIANT\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266654252400095X/pdfft?md5=c994d94a82f2721a28403c1b16aa4d93&pid=1-s2.0-S266654252400095X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIANT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266654252400095X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIANT","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654252400095X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
3D printing of reprogrammable liquid crystal elastomers with exchangeable boronic ester bonds
Liquid crystal elastomers (LCEs) are a kind of soft actuating materials with large reversible deformation ability, which can work as the “motor” to exhibit complex deformations and drive the locomotion of soft robots. The deformation of LCEs depends on the three-dimensional (3D) shape of whole structure and alignment patterns of mesogens. Various methods have been employed to fabricate the LCE structure with desired shapes and mesogen alignments. However, conventional 3D printed LCEs require continuous thermal energy input to maintain their actuated shapes. The LCEs cannot be reprocessed and reprogrammed once cured. Herein, we introduce dynamic boronic ester bonds into the ink, with which the printed LCE structures are capable of being reprogrammed from polydomain into monodomain state and vice versa. We further explore the effects of printing parameters and content of dynamic covalent bonds on the actuation performance and reprogramming ability. The actuated shape could be well predicted with finite element method. The dynamic printable LCEs developed here offer new strategy and large design space for LCE structures.
期刊介绍:
Giant is an interdisciplinary title focusing on fundamental and applied macromolecular science spanning all chemistry, physics, biology, and materials aspects of the field in the broadest sense. Key areas covered include macromolecular chemistry, supramolecular assembly, multiscale and multifunctional materials, organic-inorganic hybrid materials, biophysics, biomimetics and surface science. Core topics range from developments in synthesis, characterisation and assembly towards creating uniformly sized precision macromolecules with tailored properties, to the design and assembly of nanostructured materials in multiple dimensions, and further to the study of smart or living designer materials with tuneable multiscale properties.