通用门是下一代可配置环形振荡器 PUF 的基石

IF 2.2 3区 工程技术 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Integration-The Vlsi Journal Pub Date : 2024-08-06 DOI:10.1016/j.vlsi.2024.102257
Husam Kareem, Dmitriy Dunaev
{"title":"通用门是下一代可配置环形振荡器 PUF 的基石","authors":"Husam Kareem,&nbsp;Dmitriy Dunaev","doi":"10.1016/j.vlsi.2024.102257","DOIUrl":null,"url":null,"abstract":"<div><p>In the field of hardware security, the physical unclonable function (PUF) is known as a significant advancement for its unique and unclonable outputs, serving as a ‘digital fingerprint’ for electronic devices. This distinctiveness is crucial for high-security tasks such as device authentication and cryptographic key generation. The PUF's input-output combinations, known as challenge-response pairs (CRPs), are essential to its functionality. Although the Ring Oscillator (RO) PUF is notable for its security advantages and straightforward implementation, it's considered a ‘weak’ PUF due to its limited CRPs, highlighting a demand for more robust and secure PUF designs. This paper introduces a novel configurable inversion unit (CIU), integrating two universal logic gates, NAND and NOR, to be utilized in building various configurable ring oscillator (CRO) PUF models. Using the newly proposed CIU, we introduce two distinct CRO-PUF configurations. The first one includes 16-ring oscillators, while the second has 8-ring oscillators. A modified version of this CIU is introduced to increase the size of CRPs that a PUF can handle. A comprehensive assessment process of these configurations underscores the superior performance of these models across various parameters, including reliability, distinctiveness, balance, bit-aliasing, and randomness.</p></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"99 ","pages":"Article 102257"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167926024001214/pdfft?md5=f9db8c6a253bc1281421d28b43151fdc&pid=1-s2.0-S0167926024001214-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Universal gates as a cornerstone for next-generation configurable ring oscillator PUFs\",\"authors\":\"Husam Kareem,&nbsp;Dmitriy Dunaev\",\"doi\":\"10.1016/j.vlsi.2024.102257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the field of hardware security, the physical unclonable function (PUF) is known as a significant advancement for its unique and unclonable outputs, serving as a ‘digital fingerprint’ for electronic devices. This distinctiveness is crucial for high-security tasks such as device authentication and cryptographic key generation. The PUF's input-output combinations, known as challenge-response pairs (CRPs), are essential to its functionality. Although the Ring Oscillator (RO) PUF is notable for its security advantages and straightforward implementation, it's considered a ‘weak’ PUF due to its limited CRPs, highlighting a demand for more robust and secure PUF designs. This paper introduces a novel configurable inversion unit (CIU), integrating two universal logic gates, NAND and NOR, to be utilized in building various configurable ring oscillator (CRO) PUF models. Using the newly proposed CIU, we introduce two distinct CRO-PUF configurations. The first one includes 16-ring oscillators, while the second has 8-ring oscillators. A modified version of this CIU is introduced to increase the size of CRPs that a PUF can handle. A comprehensive assessment process of these configurations underscores the superior performance of these models across various parameters, including reliability, distinctiveness, balance, bit-aliasing, and randomness.</p></div>\",\"PeriodicalId\":54973,\"journal\":{\"name\":\"Integration-The Vlsi Journal\",\"volume\":\"99 \",\"pages\":\"Article 102257\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167926024001214/pdfft?md5=f9db8c6a253bc1281421d28b43151fdc&pid=1-s2.0-S0167926024001214-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integration-The Vlsi Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167926024001214\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167926024001214","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在硬件安全领域,物理不可克隆功能(PUF)因其独特和不可克隆的输出而被视为一项重大进步,可作为电子设备的 "数字指纹"。这种独特性对于设备验证和密码密钥生成等高安全性任务至关重要。PUF 的输入输出组合(称为 "挑战-响应对"(CRP))对其功能至关重要。尽管环形振荡器(RO)PUF 以其安全优势和直接实施而著称,但由于其 CRPs 有限而被认为是一种 "弱 "PUF,这凸显了对更强大、更安全的 PUF 设计的需求。本文介绍了一种新型可配置反转单元(CIU),它集成了 NAND 和 NOR 两种通用逻辑门,可用于构建各种可配置环振荡器(CRO)PUF 模型。利用新提出的 CIU,我们引入了两种不同的 CRO-PUF 配置。第一种包含 16 环振荡器,第二种包含 8 环振荡器。我们还引入了该 CIU 的改进版本,以增加 PUF 可处理的 CRP 大小。对这些配置的综合评估过程强调了这些模型在可靠性、独特性、平衡、比特锯齿和随机性等各种参数方面的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Universal gates as a cornerstone for next-generation configurable ring oscillator PUFs

In the field of hardware security, the physical unclonable function (PUF) is known as a significant advancement for its unique and unclonable outputs, serving as a ‘digital fingerprint’ for electronic devices. This distinctiveness is crucial for high-security tasks such as device authentication and cryptographic key generation. The PUF's input-output combinations, known as challenge-response pairs (CRPs), are essential to its functionality. Although the Ring Oscillator (RO) PUF is notable for its security advantages and straightforward implementation, it's considered a ‘weak’ PUF due to its limited CRPs, highlighting a demand for more robust and secure PUF designs. This paper introduces a novel configurable inversion unit (CIU), integrating two universal logic gates, NAND and NOR, to be utilized in building various configurable ring oscillator (CRO) PUF models. Using the newly proposed CIU, we introduce two distinct CRO-PUF configurations. The first one includes 16-ring oscillators, while the second has 8-ring oscillators. A modified version of this CIU is introduced to increase the size of CRPs that a PUF can handle. A comprehensive assessment process of these configurations underscores the superior performance of these models across various parameters, including reliability, distinctiveness, balance, bit-aliasing, and randomness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integration-The Vlsi Journal
Integration-The Vlsi Journal 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.30%
发文量
107
审稿时长
6 months
期刊介绍: Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics: Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.
期刊最新文献
Design, analysis and application of Non-Hamiltonian conservative chaotic system based on memristor Fixed-time cross-combination synchronization of complex chaotic systems with unknown parameters and perturbations PE-based high throughput and low power polar encoder for 5G-NR PBCH channel Lightweight high-throughput true random number generator based on state switchable ring oscillator A low noise instrument amplifier in 40 nm CMOS with positive feedback loop and DC servo loop for neural signal acquisition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1