Keanna Theobalt , Miles Turk , George Kalu , Robert Steele , Charles B. Withnell
{"title":"比目鱼肌的形态变化:确定结缔组织结构的一般模式和特征","authors":"Keanna Theobalt , Miles Turk , George Kalu , Robert Steele , Charles B. Withnell","doi":"10.1016/j.tria.2024.100331","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The tendons within the soleus muscle are commonly utilized to delineate location of injury for soleus muscle strains. Strains within the soleus frequently involve the myotendinous (MTJ) or myofascial (MFJ) junctions, although spatial relationship between these tendinous structures are not well understood. This study aimed to structurally identify the MTJs and MFJs within the soleus as a starting point to understanding the distribution of connective tissue for further anatomical classification.</p></div><div><h3>Methods</h3><p>Forty (n = 40) soleus muscles, representing left and right sides from twenty (n = 20) formalin-embalmed cadavers (average age 78 years old; 10 males, 10 females) were dissected in-situ to analyze the distribution and orientation of the MTJs and MFJs within classified morphological variants. Muscles were cut in cross-section at three measured locations, proximal, middle, and distal, which allowed for analyzation of tendons through the course of the muscle. Additionally, anterior surfaces of morphological variants were visualized and reconstructed in three dimensions using a handheld blue light 3D scanner.</p></div><div><h3>Results</h3><p>The study revealed five morphological variants. Bipennate-Midline (n = 25), Bipennate-Medial Deviation (n = 6), Bipennate-Lateral Deviation (n = 3), Unipennate (n = 3), and Hypopennate (n = 3). Muscles included an anterior aponeurosis that was split into medial and lateral components, with each side made up of interconnections between the MTJ and MJF. The average width of the medial aponeurosis was greatest in the middle location, while the average lateral aponeurotic width decreased from proximal to distal. Regression analysis at the middle location revealed that 65 % of the change in width of the medial aponeuroses is due to the width of the medial MFJ.</p></div><div><h3>Conclusions</h3><p>Proximal-to-distal interconnections between the lateral and medial anterior aponeuroses and their corresponding MTJs and MFJs likely play a role in soleus injury patterns, especially in morphological variants. Awareness of anatomical variations in the location and orientation of these tendinous relationships is crucial for understanding lesions on diagnostic imaging.</p></div>","PeriodicalId":37913,"journal":{"name":"Translational Research in Anatomy","volume":"37 ","pages":"Article 100331"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214854X24000554/pdfft?md5=13aed098c475967def5053318b45a095&pid=1-s2.0-S2214854X24000554-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Morphological variation of the soleus muscle: Determining general patterns and characteristics of the connective tissue architecture\",\"authors\":\"Keanna Theobalt , Miles Turk , George Kalu , Robert Steele , Charles B. Withnell\",\"doi\":\"10.1016/j.tria.2024.100331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The tendons within the soleus muscle are commonly utilized to delineate location of injury for soleus muscle strains. Strains within the soleus frequently involve the myotendinous (MTJ) or myofascial (MFJ) junctions, although spatial relationship between these tendinous structures are not well understood. This study aimed to structurally identify the MTJs and MFJs within the soleus as a starting point to understanding the distribution of connective tissue for further anatomical classification.</p></div><div><h3>Methods</h3><p>Forty (n = 40) soleus muscles, representing left and right sides from twenty (n = 20) formalin-embalmed cadavers (average age 78 years old; 10 males, 10 females) were dissected in-situ to analyze the distribution and orientation of the MTJs and MFJs within classified morphological variants. Muscles were cut in cross-section at three measured locations, proximal, middle, and distal, which allowed for analyzation of tendons through the course of the muscle. Additionally, anterior surfaces of morphological variants were visualized and reconstructed in three dimensions using a handheld blue light 3D scanner.</p></div><div><h3>Results</h3><p>The study revealed five morphological variants. Bipennate-Midline (n = 25), Bipennate-Medial Deviation (n = 6), Bipennate-Lateral Deviation (n = 3), Unipennate (n = 3), and Hypopennate (n = 3). Muscles included an anterior aponeurosis that was split into medial and lateral components, with each side made up of interconnections between the MTJ and MJF. The average width of the medial aponeurosis was greatest in the middle location, while the average lateral aponeurotic width decreased from proximal to distal. Regression analysis at the middle location revealed that 65 % of the change in width of the medial aponeuroses is due to the width of the medial MFJ.</p></div><div><h3>Conclusions</h3><p>Proximal-to-distal interconnections between the lateral and medial anterior aponeuroses and their corresponding MTJs and MFJs likely play a role in soleus injury patterns, especially in morphological variants. Awareness of anatomical variations in the location and orientation of these tendinous relationships is crucial for understanding lesions on diagnostic imaging.</p></div>\",\"PeriodicalId\":37913,\"journal\":{\"name\":\"Translational Research in Anatomy\",\"volume\":\"37 \",\"pages\":\"Article 100331\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214854X24000554/pdfft?md5=13aed098c475967def5053318b45a095&pid=1-s2.0-S2214854X24000554-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Research in Anatomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214854X24000554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Research in Anatomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214854X24000554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Morphological variation of the soleus muscle: Determining general patterns and characteristics of the connective tissue architecture
Background
The tendons within the soleus muscle are commonly utilized to delineate location of injury for soleus muscle strains. Strains within the soleus frequently involve the myotendinous (MTJ) or myofascial (MFJ) junctions, although spatial relationship between these tendinous structures are not well understood. This study aimed to structurally identify the MTJs and MFJs within the soleus as a starting point to understanding the distribution of connective tissue for further anatomical classification.
Methods
Forty (n = 40) soleus muscles, representing left and right sides from twenty (n = 20) formalin-embalmed cadavers (average age 78 years old; 10 males, 10 females) were dissected in-situ to analyze the distribution and orientation of the MTJs and MFJs within classified morphological variants. Muscles were cut in cross-section at three measured locations, proximal, middle, and distal, which allowed for analyzation of tendons through the course of the muscle. Additionally, anterior surfaces of morphological variants were visualized and reconstructed in three dimensions using a handheld blue light 3D scanner.
Results
The study revealed five morphological variants. Bipennate-Midline (n = 25), Bipennate-Medial Deviation (n = 6), Bipennate-Lateral Deviation (n = 3), Unipennate (n = 3), and Hypopennate (n = 3). Muscles included an anterior aponeurosis that was split into medial and lateral components, with each side made up of interconnections between the MTJ and MJF. The average width of the medial aponeurosis was greatest in the middle location, while the average lateral aponeurotic width decreased from proximal to distal. Regression analysis at the middle location revealed that 65 % of the change in width of the medial aponeuroses is due to the width of the medial MFJ.
Conclusions
Proximal-to-distal interconnections between the lateral and medial anterior aponeuroses and their corresponding MTJs and MFJs likely play a role in soleus injury patterns, especially in morphological variants. Awareness of anatomical variations in the location and orientation of these tendinous relationships is crucial for understanding lesions on diagnostic imaging.
期刊介绍:
Translational Research in Anatomy is an international peer-reviewed and open access journal that publishes high-quality original papers. Focusing on translational research, the journal aims to disseminate the knowledge that is gained in the basic science of anatomy and to apply it to the diagnosis and treatment of human pathology in order to improve individual patient well-being. Topics published in Translational Research in Anatomy include anatomy in all of its aspects, especially those that have application to other scientific disciplines including the health sciences: • gross anatomy • neuroanatomy • histology • immunohistochemistry • comparative anatomy • embryology • molecular biology • microscopic anatomy • forensics • imaging/radiology • medical education Priority will be given to studies that clearly articulate their relevance to the broader aspects of anatomy and how they can impact patient care.Strengthening the ties between morphological research and medicine will foster collaboration between anatomists and physicians. Therefore, Translational Research in Anatomy will serve as a platform for communication and understanding between the disciplines of anatomy and medicine and will aid in the dissemination of anatomical research. The journal accepts the following article types: 1. Review articles 2. Original research papers 3. New state-of-the-art methods of research in the field of anatomy including imaging, dissection methods, medical devices and quantitation 4. Education papers (teaching technologies/methods in medical education in anatomy) 5. Commentaries 6. Letters to the Editor 7. Selected conference papers 8. Case Reports