{"title":"生物传感与点击化学的结合:分析食品危害因素的理想组合","authors":"","doi":"10.1016/j.ccr.2024.216137","DOIUrl":null,"url":null,"abstract":"<div><p>Food safety is one of the significant global problems that has gained widespread attention all over the world. Consequently, it is crucial to develop sensitive and reliable detection technologies to ensure food safety. Notably, biosensing technologies have been widely applied in the analysis of food hazard factors due to their merits of portability, versatility, good sensitivity, rapid response, and reusability. To further improve the detection performance of biosensors, click chemistry has been successfully applied in the design and construction of biosensors because of its numerous advantages, such as moderate reaction conditions, high efficiency, no by-products, and accurate selectivity. In recent years, click chemistry-mediated biosensing platforms have obtained extensive applications in the area of food safety detection. By combining with portable analytical devices, the on-site detection of food hazard factors can be realized. In this review, we for the first time thoroughly summarized the recent advances on the click chemistry-based biosensing platform and portable analytical devices for food safety detection. First of all, the common click reactions and mechanisms involved in the construction of biosensors were introduced and discussed. Then, the design and construction of the biosensing platforms and portable analytical devices based on click chemistry were summarized, and their strengths and weaknesses were also discussed and summarized. Ultimately, attention was focused on the applications of click chemistry-enabled biosensing platforms and portable analytical devices in the detection of food hazard factors (e.g., pesticide residues, foodborne pathogens, mycotoxins, antibiotics, food allergic proteins, and heavy metal ions). Impressively, future obstacles and chances in the development and applications of click chemistry-based biosensing platforms were tentatively put forward.</p></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":null,"pages":null},"PeriodicalIF":20.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosensing meets click chemistry: A promising combination for analysis of food hazard factors\",\"authors\":\"\",\"doi\":\"10.1016/j.ccr.2024.216137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Food safety is one of the significant global problems that has gained widespread attention all over the world. Consequently, it is crucial to develop sensitive and reliable detection technologies to ensure food safety. Notably, biosensing technologies have been widely applied in the analysis of food hazard factors due to their merits of portability, versatility, good sensitivity, rapid response, and reusability. To further improve the detection performance of biosensors, click chemistry has been successfully applied in the design and construction of biosensors because of its numerous advantages, such as moderate reaction conditions, high efficiency, no by-products, and accurate selectivity. In recent years, click chemistry-mediated biosensing platforms have obtained extensive applications in the area of food safety detection. By combining with portable analytical devices, the on-site detection of food hazard factors can be realized. In this review, we for the first time thoroughly summarized the recent advances on the click chemistry-based biosensing platform and portable analytical devices for food safety detection. First of all, the common click reactions and mechanisms involved in the construction of biosensors were introduced and discussed. Then, the design and construction of the biosensing platforms and portable analytical devices based on click chemistry were summarized, and their strengths and weaknesses were also discussed and summarized. Ultimately, attention was focused on the applications of click chemistry-enabled biosensing platforms and portable analytical devices in the detection of food hazard factors (e.g., pesticide residues, foodborne pathogens, mycotoxins, antibiotics, food allergic proteins, and heavy metal ions). Impressively, future obstacles and chances in the development and applications of click chemistry-based biosensing platforms were tentatively put forward.</p></div>\",\"PeriodicalId\":289,\"journal\":{\"name\":\"Coordination Chemistry Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.3000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coordination Chemistry Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010854524004831\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854524004831","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Biosensing meets click chemistry: A promising combination for analysis of food hazard factors
Food safety is one of the significant global problems that has gained widespread attention all over the world. Consequently, it is crucial to develop sensitive and reliable detection technologies to ensure food safety. Notably, biosensing technologies have been widely applied in the analysis of food hazard factors due to their merits of portability, versatility, good sensitivity, rapid response, and reusability. To further improve the detection performance of biosensors, click chemistry has been successfully applied in the design and construction of biosensors because of its numerous advantages, such as moderate reaction conditions, high efficiency, no by-products, and accurate selectivity. In recent years, click chemistry-mediated biosensing platforms have obtained extensive applications in the area of food safety detection. By combining with portable analytical devices, the on-site detection of food hazard factors can be realized. In this review, we for the first time thoroughly summarized the recent advances on the click chemistry-based biosensing platform and portable analytical devices for food safety detection. First of all, the common click reactions and mechanisms involved in the construction of biosensors were introduced and discussed. Then, the design and construction of the biosensing platforms and portable analytical devices based on click chemistry were summarized, and their strengths and weaknesses were also discussed and summarized. Ultimately, attention was focused on the applications of click chemistry-enabled biosensing platforms and portable analytical devices in the detection of food hazard factors (e.g., pesticide residues, foodborne pathogens, mycotoxins, antibiotics, food allergic proteins, and heavy metal ions). Impressively, future obstacles and chances in the development and applications of click chemistry-based biosensing platforms were tentatively put forward.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.