在工业 5.0 生态系统中利用社交媒体数据和情感分析对需求预测模型进行判断调整

Yvonne Badulescu , Fernan Cañas , Naoufel Cheikhrouhou
{"title":"在工业 5.0 生态系统中利用社交媒体数据和情感分析对需求预测模型进行判断调整","authors":"Yvonne Badulescu ,&nbsp;Fernan Cañas ,&nbsp;Naoufel Cheikhrouhou","doi":"10.1016/j.jjimei.2024.100272","DOIUrl":null,"url":null,"abstract":"<div><p>Industry 5.0 ecosystems focus on a human-centric approach to operations and supply chain management by integrating stakeholders, advanced technologies, and processes. While incorporating social media (SM) information into demand forecasting can significantly improve accuracy, it also brings about several challenges. This paper proposes an approach to leverage Big Data originating from SM networks combined with human judgment to build demand forecasts for new products. The structured methodology is demonstrated to improve forecast accuracy in a real case of a F&amp;B company while providing several insights into the challenges and opportunities of integrating advanced information technology into the demand forecasting process. The main challenges include effectively categorising the impact factors of SM on demand forecasting, translating insights from SM into actionable decisions, and ensuring the accuracy and reliability of the data obtained from SM networks. Future studies should involve collaborative expert input and validating the approach across various companies and industries.</p></div>","PeriodicalId":100699,"journal":{"name":"International Journal of Information Management Data Insights","volume":"4 2","pages":"Article 100272"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667096824000612/pdfft?md5=ed06cae702b11f1f315fad2f13edbe73&pid=1-s2.0-S2667096824000612-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Judgmental adjustment of demand forecasting models using social media data and sentiment analysis within industry 5.0 ecosystems\",\"authors\":\"Yvonne Badulescu ,&nbsp;Fernan Cañas ,&nbsp;Naoufel Cheikhrouhou\",\"doi\":\"10.1016/j.jjimei.2024.100272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Industry 5.0 ecosystems focus on a human-centric approach to operations and supply chain management by integrating stakeholders, advanced technologies, and processes. While incorporating social media (SM) information into demand forecasting can significantly improve accuracy, it also brings about several challenges. This paper proposes an approach to leverage Big Data originating from SM networks combined with human judgment to build demand forecasts for new products. The structured methodology is demonstrated to improve forecast accuracy in a real case of a F&amp;B company while providing several insights into the challenges and opportunities of integrating advanced information technology into the demand forecasting process. The main challenges include effectively categorising the impact factors of SM on demand forecasting, translating insights from SM into actionable decisions, and ensuring the accuracy and reliability of the data obtained from SM networks. Future studies should involve collaborative expert input and validating the approach across various companies and industries.</p></div>\",\"PeriodicalId\":100699,\"journal\":{\"name\":\"International Journal of Information Management Data Insights\",\"volume\":\"4 2\",\"pages\":\"Article 100272\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000612/pdfft?md5=ed06cae702b11f1f315fad2f13edbe73&pid=1-s2.0-S2667096824000612-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management Data Insights\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667096824000612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management Data Insights","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667096824000612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

工业 5.0 生态系统通过整合利益相关者、先进技术和流程,注重以人为本的运营和供应链管理方法。将社交媒体(SM)信息纳入需求预测可显著提高准确性,但同时也带来了一些挑战。本文提出了一种利用源自社交媒体网络的大数据并结合人工判断来构建新产品需求预测的方法。在一家食品和饮料公司的真实案例中,结构化方法被证明能够提高预测的准确性,同时为将先进的信息技术整合到需求预测流程中的挑战和机遇提供了一些启示。面临的主要挑战包括:对 SM 对需求预测的影响因素进行有效分类,将 SM 的见解转化为可操作的决策,以及确保从 SM 网络获得的数据的准确性和可靠性。今后的研究应包括专家合作投入以及在不同公司和行业验证该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Judgmental adjustment of demand forecasting models using social media data and sentiment analysis within industry 5.0 ecosystems

Industry 5.0 ecosystems focus on a human-centric approach to operations and supply chain management by integrating stakeholders, advanced technologies, and processes. While incorporating social media (SM) information into demand forecasting can significantly improve accuracy, it also brings about several challenges. This paper proposes an approach to leverage Big Data originating from SM networks combined with human judgment to build demand forecasts for new products. The structured methodology is demonstrated to improve forecast accuracy in a real case of a F&B company while providing several insights into the challenges and opportunities of integrating advanced information technology into the demand forecasting process. The main challenges include effectively categorising the impact factors of SM on demand forecasting, translating insights from SM into actionable decisions, and ensuring the accuracy and reliability of the data obtained from SM networks. Future studies should involve collaborative expert input and validating the approach across various companies and industries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.20
自引率
0.00%
发文量
0
期刊最新文献
Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials Assessing industry 5.0 readiness—Prototype of a holistic digital index to evaluate sustainability, resilience and human-centered factors CovKG: A Covid-19 Knowledge Graph for enabling multidimensional analytics on Covid-19 epidemiological data considering spatiotemporal, environmental, health, and socioeconomic aspects Enhancing customer retention with machine learning: A comparative analysis of ensemble models for accurate churn prediction Customization of health insurance premiums using machine learning and explainable AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1