用于求解不可压缩两相流体流的局部 RBF 插值及其修正:保守的 Allen-Cahn-Navier-Stokes 系统

IF 4.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Analysis with Boundary Elements Pub Date : 2024-08-12 DOI:10.1016/j.enganabound.2024.105908
{"title":"用于求解不可压缩两相流体流的局部 RBF 插值及其修正:保守的 Allen-Cahn-Navier-Stokes 系统","authors":"","doi":"10.1016/j.enganabound.2024.105908","DOIUrl":null,"url":null,"abstract":"<div><p>In this research work, we apply a numerical scheme based on the first-order time integration approach combined with the modifications of the meshless approximation for solving the conservative Allen–Cahn–Navier–Stokes equations. More precisely, we first utilize a first-order time discretization for the Navier–Stokes equations and the time-splitting technique of order one for the dynamics of the phase-field variable. Besides, we use the local interpolation based on the Matérn radial function for spatial discretization. We should solve a Poisson equation with the proper boundary conditions to have the divergence-free property during the numerical algorithm. Accordingly, the applied numerical procedure could not give a stable and accurate solution. Instead, we solve a regularization system in a discrete form. To prevent the instability of the numerical solution concerning the convection term, a biharmonic term with a small coefficient based on the high-order hyperviscosity formulation has been added, which has been approximated by a scalable interpolation based on the combination of polyharmonic spline with polynomials (known as the PHS+poly). The obtained full-discrete problem is solved using the biconjugate gradient stabilized method considering a proper preconditioner. We investigate the potency of the numerical scheme by presenting some simulations via uniform, hexagonal, and quasi-uniform nodes on rectangular and irregular domains. Besides, we have compared the proposed meshless method with the standard finite element method due to the used CPU time.</p></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The localized RBF interpolation with its modifications for solving the incompressible two-phase fluid flows: A conservative Allen–Cahn–Navier–Stokes system\",\"authors\":\"\",\"doi\":\"10.1016/j.enganabound.2024.105908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research work, we apply a numerical scheme based on the first-order time integration approach combined with the modifications of the meshless approximation for solving the conservative Allen–Cahn–Navier–Stokes equations. More precisely, we first utilize a first-order time discretization for the Navier–Stokes equations and the time-splitting technique of order one for the dynamics of the phase-field variable. Besides, we use the local interpolation based on the Matérn radial function for spatial discretization. We should solve a Poisson equation with the proper boundary conditions to have the divergence-free property during the numerical algorithm. Accordingly, the applied numerical procedure could not give a stable and accurate solution. Instead, we solve a regularization system in a discrete form. To prevent the instability of the numerical solution concerning the convection term, a biharmonic term with a small coefficient based on the high-order hyperviscosity formulation has been added, which has been approximated by a scalable interpolation based on the combination of polyharmonic spline with polynomials (known as the PHS+poly). The obtained full-discrete problem is solved using the biconjugate gradient stabilized method considering a proper preconditioner. We investigate the potency of the numerical scheme by presenting some simulations via uniform, hexagonal, and quasi-uniform nodes on rectangular and irregular domains. Besides, we have compared the proposed meshless method with the standard finite element method due to the used CPU time.</p></div>\",\"PeriodicalId\":51039,\"journal\":{\"name\":\"Engineering Analysis with Boundary Elements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Analysis with Boundary Elements\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955799724003825\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724003825","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究工作中,我们采用了一种基于一阶时间积分法的数值方案,并结合无网格近似方法的修改,来求解保守的艾伦-卡恩-纳维尔-斯托克斯方程。更确切地说,我们首先对 Navier-Stokes 方程采用一阶时间离散化,对相场变量的动力学采用一阶时间分割技术。此外,我们还利用基于马特恩径向函数的局部插值进行空间离散化。在数值算法过程中,我们应在适当的边界条件下求解泊松方程,以获得无发散特性。因此,所采用的数值计算程序无法给出稳定而精确的解。因此,我们采用离散形式求解正则化系统。为了防止对流项数值解的不稳定性,我们在高阶超粘度公式的基础上添加了一个系数较小的双谐波项,该双谐波项通过基于多谐样条线与多项式(称为 PHS+poly)组合的可扩展插值来近似。考虑到适当的先决条件,我们使用双共轭梯度稳定法解决了所得到的全离散问题。我们通过对矩形和不规则域上的均匀节点、六边形节点和准均匀节点进行模拟,研究了数值方案的有效性。此外,我们还比较了所提议的无网格方法与标准有限元方法所用的 CPU 时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The localized RBF interpolation with its modifications for solving the incompressible two-phase fluid flows: A conservative Allen–Cahn–Navier–Stokes system

In this research work, we apply a numerical scheme based on the first-order time integration approach combined with the modifications of the meshless approximation for solving the conservative Allen–Cahn–Navier–Stokes equations. More precisely, we first utilize a first-order time discretization for the Navier–Stokes equations and the time-splitting technique of order one for the dynamics of the phase-field variable. Besides, we use the local interpolation based on the Matérn radial function for spatial discretization. We should solve a Poisson equation with the proper boundary conditions to have the divergence-free property during the numerical algorithm. Accordingly, the applied numerical procedure could not give a stable and accurate solution. Instead, we solve a regularization system in a discrete form. To prevent the instability of the numerical solution concerning the convection term, a biharmonic term with a small coefficient based on the high-order hyperviscosity formulation has been added, which has been approximated by a scalable interpolation based on the combination of polyharmonic spline with polynomials (known as the PHS+poly). The obtained full-discrete problem is solved using the biconjugate gradient stabilized method considering a proper preconditioner. We investigate the potency of the numerical scheme by presenting some simulations via uniform, hexagonal, and quasi-uniform nodes on rectangular and irregular domains. Besides, we have compared the proposed meshless method with the standard finite element method due to the used CPU time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Analysis with Boundary Elements
Engineering Analysis with Boundary Elements 工程技术-工程:综合
CiteScore
5.50
自引率
18.20%
发文量
368
审稿时长
56 days
期刊介绍: This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods. Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness. The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields. In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research. The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods Fields Covered: • Boundary Element Methods (BEM) • Mesh Reduction Methods (MRM) • Meshless Methods • Integral Equations • Applications of BEM/MRM in Engineering • Numerical Methods related to BEM/MRM • Computational Techniques • Combination of Different Methods • Advanced Formulations.
期刊最新文献
A TOUGH-FEMM based cryogenic THM coupled model and its application to cold-region tunnels AttenEpilepsy: A 2D convolutional network model based on multi-head self-attention A novel direct interpolation boundary element method formulation for solving diffusive–advective problems Numerical modeling and failure analysis of steel fiber-reinforced concrete beams in a reformulated mesoscopic peridynamic model Self-propulsion performance prediction in calm water based on RANS/TEBEM coupling method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1