Tyler N. Tallman , Laura Homa , Tyler Lesthaeghe , Norman Schehl , Mark Flores , John Wertz
{"title":"在施加弯曲荷载时通过 EIT 检测碳纤维/环氧树脂复合材料中的压痕损伤","authors":"Tyler N. Tallman , Laura Homa , Tyler Lesthaeghe , Norman Schehl , Mark Flores , John Wertz","doi":"10.1016/j.ndteint.2024.103206","DOIUrl":null,"url":null,"abstract":"<div><p>Electrical impedance tomography (EIT) is a method of spatially mapping the conductivity distribution of a domain and has been studied as a potential embedded sensing or nondestructive evaluation (NDE) tool. An often touted advantage of EIT is that it can be used in-situ; that is, because the method only requires the application of unobtrusive electrodes, it can conceivably be used while the component or structure is in operation. This <em>material-as-the-sensor</em> philosophy strongly aligns with key components of the NDE 4.0 vision such as the realization of intelligent cyber–physical systems (CPS) and digital twins. To date, however, the claim of in-situ sensing via EIT has not been significantly substantiated. This is problematic because operational loads induce strains that often change the conductivity of the material. Establishing that EIT can detect damage-induced conductivity changes through the presence of unrelated strain-induced conductivity changes is therefore important. To that end, we herein study the application of EIT for detecting indentation damage in a carbon fiber/epoxy composite as the composite is loaded in a four-point bend. It was found that the bending load changes the contact impedance of the electrodes, which resulted in poor EIT images when solving the EIT inverse problem with the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-norm on the error term. Using the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm on the error term, solved via the primal–dual interior point method (PDIPM), significantly improved image quality. Image quality was even further improved through the use of a mixed prior for regularization, and EIT images were compared to thermography with good agreement. These results show that EIT can indeed detect damage through the presence of an applied load, but care must be taken to account for factors such as outlier data arising from electrode degradation and changing contact impedance. Use of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm on the error term is therefore highly recommended for in-situ imaging via EIT.</p></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"147 ","pages":"Article 103206"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of indentation damage in carbon fiber/epoxy composites via EIT during the application of bending loads\",\"authors\":\"Tyler N. Tallman , Laura Homa , Tyler Lesthaeghe , Norman Schehl , Mark Flores , John Wertz\",\"doi\":\"10.1016/j.ndteint.2024.103206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrical impedance tomography (EIT) is a method of spatially mapping the conductivity distribution of a domain and has been studied as a potential embedded sensing or nondestructive evaluation (NDE) tool. An often touted advantage of EIT is that it can be used in-situ; that is, because the method only requires the application of unobtrusive electrodes, it can conceivably be used while the component or structure is in operation. This <em>material-as-the-sensor</em> philosophy strongly aligns with key components of the NDE 4.0 vision such as the realization of intelligent cyber–physical systems (CPS) and digital twins. To date, however, the claim of in-situ sensing via EIT has not been significantly substantiated. This is problematic because operational loads induce strains that often change the conductivity of the material. Establishing that EIT can detect damage-induced conductivity changes through the presence of unrelated strain-induced conductivity changes is therefore important. To that end, we herein study the application of EIT for detecting indentation damage in a carbon fiber/epoxy composite as the composite is loaded in a four-point bend. It was found that the bending load changes the contact impedance of the electrodes, which resulted in poor EIT images when solving the EIT inverse problem with the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-norm on the error term. Using the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm on the error term, solved via the primal–dual interior point method (PDIPM), significantly improved image quality. Image quality was even further improved through the use of a mixed prior for regularization, and EIT images were compared to thermography with good agreement. These results show that EIT can indeed detect damage through the presence of an applied load, but care must be taken to account for factors such as outlier data arising from electrode degradation and changing contact impedance. Use of the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm on the error term is therefore highly recommended for in-situ imaging via EIT.</p></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"147 \",\"pages\":\"Article 103206\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524001713\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524001713","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
电阻抗层析成像(EIT)是一种绘制域电导率分布空间图的方法,已被研究为一种潜在的嵌入式传感或无损评价(NDE)工具。EIT 经常被吹捧的一个优点是它可以在原位使用;也就是说,由于这种方法只需要使用不显眼的电极,因此可以想象它可以在部件或结构运行时使用。这种 "材料即传感器 "的理念与无损检测 4.0 愿景的关键要素(如实现智能网络物理系统 (CPS) 和数字孪生)高度一致。然而,迄今为止,通过 EIT 进行原位传感的说法尚未得到充分证实。这是个问题,因为运行载荷引起的应变往往会改变材料的导电性。因此,确定 EIT 能够通过存在不相关的应变引起的电导率变化来检测损坏引起的电导率变化非常重要。为此,我们在此研究了如何应用 EIT 检测碳纤维/环氧树脂复合材料在四点弯曲加载时的压痕损伤。研究发现,弯曲负载会改变电极的接触阻抗,这导致在使用误差项 ℓ2 规范求解 EIT 反问题时,EIT 图像效果不佳。在误差项上使用 ℓ1 准则,并通过基元-双内点法(PDIPM)求解,可显著改善图像质量。通过使用混合先验正则化,图像质量得到了进一步提高。这些结果表明,EIT 的确可以通过外加载荷检测损伤,但必须注意电极退化和接触阻抗变化引起的离群数据等因素。因此,强烈建议在通过 EIT 进行原位成像时使用误差项 ℓ1 准则。
Detection of indentation damage in carbon fiber/epoxy composites via EIT during the application of bending loads
Electrical impedance tomography (EIT) is a method of spatially mapping the conductivity distribution of a domain and has been studied as a potential embedded sensing or nondestructive evaluation (NDE) tool. An often touted advantage of EIT is that it can be used in-situ; that is, because the method only requires the application of unobtrusive electrodes, it can conceivably be used while the component or structure is in operation. This material-as-the-sensor philosophy strongly aligns with key components of the NDE 4.0 vision such as the realization of intelligent cyber–physical systems (CPS) and digital twins. To date, however, the claim of in-situ sensing via EIT has not been significantly substantiated. This is problematic because operational loads induce strains that often change the conductivity of the material. Establishing that EIT can detect damage-induced conductivity changes through the presence of unrelated strain-induced conductivity changes is therefore important. To that end, we herein study the application of EIT for detecting indentation damage in a carbon fiber/epoxy composite as the composite is loaded in a four-point bend. It was found that the bending load changes the contact impedance of the electrodes, which resulted in poor EIT images when solving the EIT inverse problem with the -norm on the error term. Using the -norm on the error term, solved via the primal–dual interior point method (PDIPM), significantly improved image quality. Image quality was even further improved through the use of a mixed prior for regularization, and EIT images were compared to thermography with good agreement. These results show that EIT can indeed detect damage through the presence of an applied load, but care must be taken to account for factors such as outlier data arising from electrode degradation and changing contact impedance. Use of the -norm on the error term is therefore highly recommended for in-situ imaging via EIT.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.