Iván del Pino;Angel Santamaria-Navarro;Anaís Garrell Zulueta;Fernando Torres;Juan Andrade-Cetto
{"title":"基于概率图的城市机器人实时地面分割技术","authors":"Iván del Pino;Angel Santamaria-Navarro;Anaís Garrell Zulueta;Fernando Torres;Juan Andrade-Cetto","doi":"10.1109/TIV.2024.3383599","DOIUrl":null,"url":null,"abstract":"Terrain analysis is of paramount importance for the safe navigation of autonomous robots. In this study, we introduce GATA, a probabilistic real-time graph-based method for segmentation and traversability analysis of point clouds. In the method, we iteratively refine the parameters of a ground plane model and identify regions imaged by a LiDAR as traversable and non-traversable. The method excels in delivering rapid, high-precision obstacle detection, surpassing existing state-of-the-art methods. Furthermore, our method addresses the need to distinguish between surfaces with varying traversability, such as vegetation or unpaved roads, depending on the specific application. To achieve this, we integrate a shallow neural network, which operates on features extracted from the ground model. This enhancement not only boosts performance but also maintains real-time efficiency, without the need for GPUs. The method is rigorously evaluated using the SemanticKitti dataset and its practicality is showcased through real-world experiments with an urban last-mile delivery autonomous robot.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 5","pages":"4989-5002"},"PeriodicalIF":14.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10487036","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Graph-Based Real-Time Ground Segmentation for Urban Robotics\",\"authors\":\"Iván del Pino;Angel Santamaria-Navarro;Anaís Garrell Zulueta;Fernando Torres;Juan Andrade-Cetto\",\"doi\":\"10.1109/TIV.2024.3383599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terrain analysis is of paramount importance for the safe navigation of autonomous robots. In this study, we introduce GATA, a probabilistic real-time graph-based method for segmentation and traversability analysis of point clouds. In the method, we iteratively refine the parameters of a ground plane model and identify regions imaged by a LiDAR as traversable and non-traversable. The method excels in delivering rapid, high-precision obstacle detection, surpassing existing state-of-the-art methods. Furthermore, our method addresses the need to distinguish between surfaces with varying traversability, such as vegetation or unpaved roads, depending on the specific application. To achieve this, we integrate a shallow neural network, which operates on features extracted from the ground model. This enhancement not only boosts performance but also maintains real-time efficiency, without the need for GPUs. The method is rigorously evaluated using the SemanticKitti dataset and its practicality is showcased through real-world experiments with an urban last-mile delivery autonomous robot.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"9 5\",\"pages\":\"4989-5002\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10487036\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10487036/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10487036/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Probabilistic Graph-Based Real-Time Ground Segmentation for Urban Robotics
Terrain analysis is of paramount importance for the safe navigation of autonomous robots. In this study, we introduce GATA, a probabilistic real-time graph-based method for segmentation and traversability analysis of point clouds. In the method, we iteratively refine the parameters of a ground plane model and identify regions imaged by a LiDAR as traversable and non-traversable. The method excels in delivering rapid, high-precision obstacle detection, surpassing existing state-of-the-art methods. Furthermore, our method addresses the need to distinguish between surfaces with varying traversability, such as vegetation or unpaved roads, depending on the specific application. To achieve this, we integrate a shallow neural network, which operates on features extracted from the ground model. This enhancement not only boosts performance but also maintains real-time efficiency, without the need for GPUs. The method is rigorously evaluated using the SemanticKitti dataset and its practicality is showcased through real-world experiments with an urban last-mile delivery autonomous robot.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.