软式可穿戴机器人的进步:致动机制和物理界面系统综述

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-03-30 DOI:10.1109/TMRB.2024.3407374
Sajjad Hussain;Fanny Ficuciello
{"title":"软式可穿戴机器人的进步:致动机制和物理界面系统综述","authors":"Sajjad Hussain;Fanny Ficuciello","doi":"10.1109/TMRB.2024.3407374","DOIUrl":null,"url":null,"abstract":"Soft actuators and robotic devices designed for rehabilitation and assistance are a rapidly growing field of research. Their inherent flexibility enhances comfort and usability without restricting the user’s natural range of motion. However, despite these advantages, there are still several challenges that need to be addressed before these systems can be commercialized. This paper presents a comprehensive review of the latest developments in soft wearable robots, also known as exosuits. Soft exosuits are composed of two main components: actuation mechanisms (how forces/torques are generated) and physical interfaces (how and where the robot is anchored to the body). This paper reviews the advances in these two areas, while categorizing exosuits based on the intended assisted joint, assisted degrees of freedom (DOF), and device type. The systematic literature review follows the PRISMA guidelines to summarize the relevant studies and investigate their related physical interface, actuation mechanism and its design. Several limitations were identified in these areas, and insights into potential future research directions are presented. In the future, the goal should be to develop an untethered assistive device that can provide assistance to multiple joints while having a low form factor, an intuitive and natural interface, and being comfortable for the user.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 3","pages":"903-929"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542466","citationCount":"0","resultStr":"{\"title\":\"Advancements in Soft Wearable Robots: A Systematic Review of Actuation Mechanisms and Physical Interfaces\",\"authors\":\"Sajjad Hussain;Fanny Ficuciello\",\"doi\":\"10.1109/TMRB.2024.3407374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft actuators and robotic devices designed for rehabilitation and assistance are a rapidly growing field of research. Their inherent flexibility enhances comfort and usability without restricting the user’s natural range of motion. However, despite these advantages, there are still several challenges that need to be addressed before these systems can be commercialized. This paper presents a comprehensive review of the latest developments in soft wearable robots, also known as exosuits. Soft exosuits are composed of two main components: actuation mechanisms (how forces/torques are generated) and physical interfaces (how and where the robot is anchored to the body). This paper reviews the advances in these two areas, while categorizing exosuits based on the intended assisted joint, assisted degrees of freedom (DOF), and device type. The systematic literature review follows the PRISMA guidelines to summarize the relevant studies and investigate their related physical interface, actuation mechanism and its design. Several limitations were identified in these areas, and insights into potential future research directions are presented. In the future, the goal should be to develop an untethered assistive device that can provide assistance to multiple joints while having a low form factor, an intuitive and natural interface, and being comfortable for the user.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":\"6 3\",\"pages\":\"903-929\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10542466\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542466/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10542466/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

用于康复和辅助的软促动器和机器人设备是一个快速发展的研究领域。它们固有的灵活性提高了舒适度和可用性,同时又不会限制用户的自然运动范围。然而,尽管有这些优势,在这些系统实现商业化之前,仍有一些挑战需要解决。本文全面回顾了软质可穿戴机器人(也称外穿式机器人)的最新发展。软外装由两个主要部分组成:驱动机制(如何产生力/力矩)和物理接口(如何以及在何处将机器人固定在身体上)。本文回顾了这两个领域的进展,同时根据预期的辅助关节、辅助自由度 (DOF) 和装置类型对外衣进行了分类。系统性文献综述遵循 PRISMA 指南,总结了相关研究,并调查了与之相关的物理接口、驱动机制及其设计。在这些领域发现了一些局限性,并对未来潜在的研究方向提出了见解。未来的目标应该是开发出一种不受约束的辅助设备,它可以为多个关节提供帮助,同时外形小巧,界面直观自然,让用户感觉舒适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancements in Soft Wearable Robots: A Systematic Review of Actuation Mechanisms and Physical Interfaces
Soft actuators and robotic devices designed for rehabilitation and assistance are a rapidly growing field of research. Their inherent flexibility enhances comfort and usability without restricting the user’s natural range of motion. However, despite these advantages, there are still several challenges that need to be addressed before these systems can be commercialized. This paper presents a comprehensive review of the latest developments in soft wearable robots, also known as exosuits. Soft exosuits are composed of two main components: actuation mechanisms (how forces/torques are generated) and physical interfaces (how and where the robot is anchored to the body). This paper reviews the advances in these two areas, while categorizing exosuits based on the intended assisted joint, assisted degrees of freedom (DOF), and device type. The systematic literature review follows the PRISMA guidelines to summarize the relevant studies and investigate their related physical interface, actuation mechanism and its design. Several limitations were identified in these areas, and insights into potential future research directions are presented. In the future, the goal should be to develop an untethered assistive device that can provide assistance to multiple joints while having a low form factor, an intuitive and natural interface, and being comfortable for the user.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial Special section on the Hamlyn Symposium 2023—Immersive Tech: The Future of Medicine IEEE Transactions on Medical Robotics and Bionics Publication Information IEEE Transactions on Medical Robotics and Bionics Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1