智能采矿车辆感知增强技术:4D 毫米波雷达和多传感器融合

IF 14 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Intelligent Vehicles Pub Date : 2024-06-01 DOI:10.1109/TIV.2024.3427718
Jianjian Yang;Tianmu Gui;Yuyuan Zhang;Shirong Ge;Qiankun Huang;Guanghui Zhao
{"title":"智能采矿车辆感知增强技术:4D 毫米波雷达和多传感器融合","authors":"Jianjian Yang;Tianmu Gui;Yuyuan Zhang;Shirong Ge;Qiankun Huang;Guanghui Zhao","doi":"10.1109/TIV.2024.3427718","DOIUrl":null,"url":null,"abstract":"Advancements in 4D mmWave radar with multi-sensor fusion have significantly enhanced the robustness of autonomous driving systems. In the context of “Mining 5.0” based on parallel intelligence theory, autonomous haulage need to achieve full autonomy in open-pit mines. Current systems use 3D mmWave radar, LiDAR, and cameras but have limited automation progress. This perspective discusses the limitations of these systems and how integrating 4D mmWave radar can improve mining autonomy. This perspective results from discussions at several recent Distributed/Decentralized Hybrid Workshops on Autonomous Mining (DHW-AM) and aims at enhancing the intelligence of future mining operations.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 6","pages":"5009-5013"},"PeriodicalIF":14.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement Technology for Perception in Smart Mining Vehicles: 4D Millimeter-Wave Radar and Multi-Sensor Fusion\",\"authors\":\"Jianjian Yang;Tianmu Gui;Yuyuan Zhang;Shirong Ge;Qiankun Huang;Guanghui Zhao\",\"doi\":\"10.1109/TIV.2024.3427718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancements in 4D mmWave radar with multi-sensor fusion have significantly enhanced the robustness of autonomous driving systems. In the context of “Mining 5.0” based on parallel intelligence theory, autonomous haulage need to achieve full autonomy in open-pit mines. Current systems use 3D mmWave radar, LiDAR, and cameras but have limited automation progress. This perspective discusses the limitations of these systems and how integrating 4D mmWave radar can improve mining autonomy. This perspective results from discussions at several recent Distributed/Decentralized Hybrid Workshops on Autonomous Mining (DHW-AM) and aims at enhancing the intelligence of future mining operations.\",\"PeriodicalId\":36532,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Vehicles\",\"volume\":\"9 6\",\"pages\":\"5009-5013\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Vehicles\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10599193/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599193/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

四维毫米波雷达与多传感器融合技术的进步大大增强了自动驾驶系统的鲁棒性。在基于并行智能理论的 "采矿 5.0 "背景下,自主运输需要在露天矿中实现完全自主。目前的系统使用三维毫米波雷达、激光雷达和摄像头,但自动化进展有限。本视角讨论了这些系统的局限性,以及集成 4D 毫米波雷达如何提高采矿自主性。本视角源于最近几届分布式/分散式混合自主采矿研讨会(DHW-AM)的讨论,旨在提高未来采矿作业的智能化水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancement Technology for Perception in Smart Mining Vehicles: 4D Millimeter-Wave Radar and Multi-Sensor Fusion
Advancements in 4D mmWave radar with multi-sensor fusion have significantly enhanced the robustness of autonomous driving systems. In the context of “Mining 5.0” based on parallel intelligence theory, autonomous haulage need to achieve full autonomy in open-pit mines. Current systems use 3D mmWave radar, LiDAR, and cameras but have limited automation progress. This perspective discusses the limitations of these systems and how integrating 4D mmWave radar can improve mining autonomy. This perspective results from discussions at several recent Distributed/Decentralized Hybrid Workshops on Autonomous Mining (DHW-AM) and aims at enhancing the intelligence of future mining operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Intelligent Vehicles
IEEE Transactions on Intelligent Vehicles Mathematics-Control and Optimization
CiteScore
12.10
自引率
13.40%
发文量
177
期刊介绍: The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges. Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.
期刊最新文献
Table of Contents Introducing IEEE Collabratec The Autonomous Right of Way: Smart Governance for Smart Mobility With Intelligent Vehicles TechRxiv: Share Your Preprint Research with the World! Blank
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1