Dan Wang;Deyu Huang;Qing'e Hu;Hongjie Jia;Bo Liu;Yang Lei
{"title":"基于电热的综合需求响应,考虑互联地区的双竞价能源市场与多能源存储","authors":"Dan Wang;Deyu Huang;Qing'e Hu;Hongjie Jia;Bo Liu;Yang Lei","doi":"10.17775/CSEEJPES.2022.02140","DOIUrl":null,"url":null,"abstract":"With development of integrated energy systems and energy markets, transactive energy has received increasing attention from society and academia, and realization of energy distribution and integrated demand response through market transactions has become a current research hotspot. Research on optimized operation of a distributed energy station as a regional energy supply center is of great significance for improving flexibility and reliability of the system. Based on retail-side energy trading market, this study first establishes a framework of combined electric and heating energy markets and analyses a double auction market mechanism model of interconnected distributed energy stations. This study establishes a mechanism model of energy market participants, and establishes the electric heating combined market-clearing model to maximize global surplus considering multi-energy storage. Finally, in the case study, a typical user energy consumption scenario in winter is selected, showing market-clearing results and demand response effects on a typical day. Impact of transmission line constraints, energy supply equipment capacity, and other factors on clearing results and global surplus are compared and analyzed, verifying the effects of the proposed method on improving global surplus, enhancing interests of market participants and realizing coordination and optimal allocation of both supply and demand resources through energy complementarity between regions.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322708","citationCount":"0","resultStr":"{\"title\":\"Electricity-Heat-Based Integrated Demand Response Considering Double Auction Energy Market with Multi-Energy Storage for Interconnected Areas\",\"authors\":\"Dan Wang;Deyu Huang;Qing'e Hu;Hongjie Jia;Bo Liu;Yang Lei\",\"doi\":\"10.17775/CSEEJPES.2022.02140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With development of integrated energy systems and energy markets, transactive energy has received increasing attention from society and academia, and realization of energy distribution and integrated demand response through market transactions has become a current research hotspot. Research on optimized operation of a distributed energy station as a regional energy supply center is of great significance for improving flexibility and reliability of the system. Based on retail-side energy trading market, this study first establishes a framework of combined electric and heating energy markets and analyses a double auction market mechanism model of interconnected distributed energy stations. This study establishes a mechanism model of energy market participants, and establishes the electric heating combined market-clearing model to maximize global surplus considering multi-energy storage. Finally, in the case study, a typical user energy consumption scenario in winter is selected, showing market-clearing results and demand response effects on a typical day. Impact of transmission line constraints, energy supply equipment capacity, and other factors on clearing results and global surplus are compared and analyzed, verifying the effects of the proposed method on improving global surplus, enhancing interests of market participants and realizing coordination and optimal allocation of both supply and demand resources through energy complementarity between regions.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322708\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10322708/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10322708/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Electricity-Heat-Based Integrated Demand Response Considering Double Auction Energy Market with Multi-Energy Storage for Interconnected Areas
With development of integrated energy systems and energy markets, transactive energy has received increasing attention from society and academia, and realization of energy distribution and integrated demand response through market transactions has become a current research hotspot. Research on optimized operation of a distributed energy station as a regional energy supply center is of great significance for improving flexibility and reliability of the system. Based on retail-side energy trading market, this study first establishes a framework of combined electric and heating energy markets and analyses a double auction market mechanism model of interconnected distributed energy stations. This study establishes a mechanism model of energy market participants, and establishes the electric heating combined market-clearing model to maximize global surplus considering multi-energy storage. Finally, in the case study, a typical user energy consumption scenario in winter is selected, showing market-clearing results and demand response effects on a typical day. Impact of transmission line constraints, energy supply equipment capacity, and other factors on clearing results and global surplus are compared and analyzed, verifying the effects of the proposed method on improving global surplus, enhancing interests of market participants and realizing coordination and optimal allocation of both supply and demand resources through energy complementarity between regions.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.