不同步行速度下基于贝叶斯算法的髋关节辅助软外包受力曲线优化设计

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-06-03 DOI:10.1109/TMRB.2024.3408308
Qiang Chen;Jiaxin Wang;Qian Xiang;Shijie Guo
{"title":"不同步行速度下基于贝叶斯算法的髋关节辅助软外包受力曲线优化设计","authors":"Qiang Chen;Jiaxin Wang;Qian Xiang;Shijie Guo","doi":"10.1109/TMRB.2024.3408308","DOIUrl":null,"url":null,"abstract":"Relevant research highlights humans’ capacity to continuously adapt their walking speed to minimize metabolic energy consumption during overground free walking. Past studies have shown that soft exosuits assisting in hip flexion and extension can reduce metabolic costs and regulate gait parameters during human locomotion. This emphasizes the need to fine-tune hip exosuit parameters to align with walking speed, thereby enhancing metabolic efficiency. This study aims to optimize assistive force parameters of hip exosuits across different walking speeds, providing insights for optimizing force profiles in outdoor walking. We employed a human-in-the-loop approach with Bayesian optimization to determine optimal force profiles for hip assistance. Six subjects performed treadmill walking at four fixed speeds (0.84, 1.16, 1.48, and 1.8 m/s), optimizing control parameters for each speed and establishing a Bayesian experience (BXE) linking walking speed to optimal parameters. Furthermore, we developed a real-time force optimization controller based on the BXE for adjusting the force parameters of assistance. Outdoor walking experiments with the same subjects showed that BXE-optimized profiles significantly reduced metabolic costs compared to fixed profiles. This study underscores the importance of optimizing assistive forces for varying walking speeds in humans.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Algorithm-Based Force Profiles Optimization of Hip-Assistive Soft Exosuits Under Variable Walking Speeds\",\"authors\":\"Qiang Chen;Jiaxin Wang;Qian Xiang;Shijie Guo\",\"doi\":\"10.1109/TMRB.2024.3408308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relevant research highlights humans’ capacity to continuously adapt their walking speed to minimize metabolic energy consumption during overground free walking. Past studies have shown that soft exosuits assisting in hip flexion and extension can reduce metabolic costs and regulate gait parameters during human locomotion. This emphasizes the need to fine-tune hip exosuit parameters to align with walking speed, thereby enhancing metabolic efficiency. This study aims to optimize assistive force parameters of hip exosuits across different walking speeds, providing insights for optimizing force profiles in outdoor walking. We employed a human-in-the-loop approach with Bayesian optimization to determine optimal force profiles for hip assistance. Six subjects performed treadmill walking at four fixed speeds (0.84, 1.16, 1.48, and 1.8 m/s), optimizing control parameters for each speed and establishing a Bayesian experience (BXE) linking walking speed to optimal parameters. Furthermore, we developed a real-time force optimization controller based on the BXE for adjusting the force parameters of assistance. Outdoor walking experiments with the same subjects showed that BXE-optimized profiles significantly reduced metabolic costs compared to fixed profiles. This study underscores the importance of optimizing assistive forces for varying walking speeds in humans.\",\"PeriodicalId\":73318,\"journal\":{\"name\":\"IEEE transactions on medical robotics and bionics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical robotics and bionics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10546990/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10546990/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

相关研究强调了人类在地面自由行走过程中不断调整行走速度以尽量减少新陈代谢能量消耗的能力。过去的研究表明,辅助髋关节屈伸的软外装能降低代谢成本,并调节人体运动时的步态参数。这就强调有必要微调髋关节外衣的参数,使其与步行速度保持一致,从而提高代谢效率。本研究旨在优化髋关节外穿衣在不同步行速度下的辅助力参数,为优化户外步行的力曲线提供启示。我们采用了贝叶斯优化的人在环方法来确定髋关节辅助的最佳力曲线。六名受试者以四种固定速度(0.84、1.16、1.48 和 1.8 米/秒)在跑步机上行走,优化了每种速度的控制参数,并建立了将行走速度与最佳参数联系起来的贝叶斯经验(BXE)。此外,我们还根据贝叶经验开发了一种实时力优化控制器,用于调整辅助力参数。以相同受试者为对象进行的户外行走实验表明,与固定参数相比,BXE 优化参数显著降低了代谢成本。这项研究强调了针对人类不同步行速度优化辅助力的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Algorithm-Based Force Profiles Optimization of Hip-Assistive Soft Exosuits Under Variable Walking Speeds
Relevant research highlights humans’ capacity to continuously adapt their walking speed to minimize metabolic energy consumption during overground free walking. Past studies have shown that soft exosuits assisting in hip flexion and extension can reduce metabolic costs and regulate gait parameters during human locomotion. This emphasizes the need to fine-tune hip exosuit parameters to align with walking speed, thereby enhancing metabolic efficiency. This study aims to optimize assistive force parameters of hip exosuits across different walking speeds, providing insights for optimizing force profiles in outdoor walking. We employed a human-in-the-loop approach with Bayesian optimization to determine optimal force profiles for hip assistance. Six subjects performed treadmill walking at four fixed speeds (0.84, 1.16, 1.48, and 1.8 m/s), optimizing control parameters for each speed and establishing a Bayesian experience (BXE) linking walking speed to optimal parameters. Furthermore, we developed a real-time force optimization controller based on the BXE for adjusting the force parameters of assistance. Outdoor walking experiments with the same subjects showed that BXE-optimized profiles significantly reduced metabolic costs compared to fixed profiles. This study underscores the importance of optimizing assistive forces for varying walking speeds in humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial Special section on the Hamlyn Symposium 2023—Immersive Tech: The Future of Medicine IEEE Transactions on Medical Robotics and Bionics Publication Information IEEE Transactions on Medical Robotics and Bionics Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1