具有隐私保护功能的基于 Merkle 哈希网格的雾存储动态外包数据审计方案

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-02-05 DOI:10.1109/TSUSC.2024.3362074
Ke Gu;XingQiang Wang;Xiong Li
{"title":"具有隐私保护功能的基于 Merkle 哈希网格的雾存储动态外包数据审计方案","authors":"Ke Gu;XingQiang Wang;Xiong Li","doi":"10.1109/TSUSC.2024.3362074","DOIUrl":null,"url":null,"abstract":"The security of fog computing has been researched and concerned with its development, where malicious attacks pose a greater threat to distributed data storage based on fog computing. Also, the rapid increasing on the number of terminal devices has raised the importance of fog computing-based distributed data storage. In response to this demand, it is essential to establish a secure and privacy-preserving distributed data auditing method that enables security protection of stored data and effective control over identities of auditors. In this paper, we propose a dynamic outsourced data audit scheme for Merkle hash grid-based fog storage with privacy-preserving, where fog servers are used to undertake partial outsourced computation and data storage. Our scheme can provide the function of privacy-preserving for outsourced data by blinding original stored data, and supports data owners to define their auditing access policies by the linear secret-sharing scheme to control the identities of auditors. Further, the construction of Merkle hash grid is used to improve the efficiency of dynamic data operations. Also, a server locating approach is proposed to enable the third-part auditor to identify specific malicious data fog servers within distributed data storage. Under the proposed security model, the security of our scheme can be proved, which can further provide collusion resistance and privacy-preserving for outsourced data. Additionally, both theoretical and experimental evaluations illustrate the efficiency of our proposed scheme.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"695-711"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Outsourced Data Audit Scheme for Merkle Hash Grid-Based Fog Storage With Privacy-Preserving\",\"authors\":\"Ke Gu;XingQiang Wang;Xiong Li\",\"doi\":\"10.1109/TSUSC.2024.3362074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The security of fog computing has been researched and concerned with its development, where malicious attacks pose a greater threat to distributed data storage based on fog computing. Also, the rapid increasing on the number of terminal devices has raised the importance of fog computing-based distributed data storage. In response to this demand, it is essential to establish a secure and privacy-preserving distributed data auditing method that enables security protection of stored data and effective control over identities of auditors. In this paper, we propose a dynamic outsourced data audit scheme for Merkle hash grid-based fog storage with privacy-preserving, where fog servers are used to undertake partial outsourced computation and data storage. Our scheme can provide the function of privacy-preserving for outsourced data by blinding original stored data, and supports data owners to define their auditing access policies by the linear secret-sharing scheme to control the identities of auditors. Further, the construction of Merkle hash grid is used to improve the efficiency of dynamic data operations. Also, a server locating approach is proposed to enable the third-part auditor to identify specific malicious data fog servers within distributed data storage. Under the proposed security model, the security of our scheme can be proved, which can further provide collusion resistance and privacy-preserving for outsourced data. Additionally, both theoretical and experimental evaluations illustrate the efficiency of our proposed scheme.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 4\",\"pages\":\"695-711\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10420499/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10420499/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着雾计算的发展,人们对雾计算的安全性进行了研究和关注,其中恶意攻击对基于雾计算的分布式数据存储构成了更大的威胁。此外,终端设备数量的快速增长也提高了基于雾计算的分布式数据存储的重要性。针对这一需求,必须建立一种安全且保护隐私的分布式数据审计方法,以实现对存储数据的安全保护和对审计人员身份的有效控制。本文提出了一种基于 Merkle 哈希网格的雾存储动态外包数据审计方案,利用雾服务器承担部分外包计算和数据存储,具有隐私保护功能。我们的方案可以通过屏蔽原始存储数据来为外包数据提供隐私保护功能,并支持数据所有者通过线性秘密共享方案来定义审计访问策略,从而控制审计人员的身份。此外,还利用 Merkle 哈希网格的构建提高了动态数据操作的效率。同时,还提出了一种服务器定位方法,使第三部分审计员能够识别分布式数据存储中特定的恶意数据雾服务器。在所提出的安全模型下,我们的方案的安全性得到了证明,可以进一步为外包数据提供抗串通和隐私保护功能。此外,理论和实验评估都说明了我们提出的方案的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Outsourced Data Audit Scheme for Merkle Hash Grid-Based Fog Storage With Privacy-Preserving
The security of fog computing has been researched and concerned with its development, where malicious attacks pose a greater threat to distributed data storage based on fog computing. Also, the rapid increasing on the number of terminal devices has raised the importance of fog computing-based distributed data storage. In response to this demand, it is essential to establish a secure and privacy-preserving distributed data auditing method that enables security protection of stored data and effective control over identities of auditors. In this paper, we propose a dynamic outsourced data audit scheme for Merkle hash grid-based fog storage with privacy-preserving, where fog servers are used to undertake partial outsourced computation and data storage. Our scheme can provide the function of privacy-preserving for outsourced data by blinding original stored data, and supports data owners to define their auditing access policies by the linear secret-sharing scheme to control the identities of auditors. Further, the construction of Merkle hash grid is used to improve the efficiency of dynamic data operations. Also, a server locating approach is proposed to enable the third-part auditor to identify specific malicious data fog servers within distributed data storage. Under the proposed security model, the security of our scheme can be proved, which can further provide collusion resistance and privacy-preserving for outsourced data. Additionally, both theoretical and experimental evaluations illustrate the efficiency of our proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Editorial Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 2024 Reviewers List Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1