{"title":"共轭矢量法在电力电子化系统非对称故障分析中的应用","authors":"Yingbiao Li;Xing Liu;Jiabing Hu;Jianhang Zhu;Jianbo Guo","doi":"10.17775/CSEEJPES.2023.04790","DOIUrl":null,"url":null,"abstract":"With the wide application of power electronized resources (PERs), the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults. As a result, the traditional phasor model, impedance model, and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges. Hence, a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency. Furthermore, asymmetrical fault characteristics are extracted. As an application, a faulted phase identification (FPI) strategy is proposed based on the fault characteristics. The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436617","citationCount":"0","resultStr":"{\"title\":\"Conjugate Vectors Method Applied to Asymmetrical Fault Analysis of Power Electronized Power Systems\",\"authors\":\"Yingbiao Li;Xing Liu;Jiabing Hu;Jianhang Zhu;Jianbo Guo\",\"doi\":\"10.17775/CSEEJPES.2023.04790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the wide application of power electronized resources (PERs), the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults. As a result, the traditional phasor model, impedance model, and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges. Hence, a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency. Furthermore, asymmetrical fault characteristics are extracted. As an application, a faulted phase identification (FPI) strategy is proposed based on the fault characteristics. The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.\",\"PeriodicalId\":10729,\"journal\":{\"name\":\"CSEE Journal of Power and Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436617\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CSEE Journal of Power and Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10436617/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSEE Journal of Power and Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10436617/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Conjugate Vectors Method Applied to Asymmetrical Fault Analysis of Power Electronized Power Systems
With the wide application of power electronized resources (PERs), the amplitude and frequency of voltages show significant time-varying characteristics under asymmetrical faults. As a result, the traditional phasor model, impedance model, and symmetrical components method based on the constant amplitude and frequency of voltages are facing great challenges. Hence, a novel asymmetrical fault analysis method based on conjugate vectors is proposed in this paper which can meet the modeling and analysis requirements of the network excited by voltages with time-varying amplitude/frequency. Furthermore, asymmetrical fault characteristics are extracted. As an application, a faulted phase identification (FPI) strategy is proposed based on the fault characteristics. The correctness and superiority of the asymmetrical fault analysis method and FPI strategy are verified in time-domain simulations and a real-time digital simulator.
期刊介绍:
The CSEE Journal of Power and Energy Systems (JPES) is an international bimonthly journal published by the Chinese Society for Electrical Engineering (CSEE) in collaboration with CEPRI (China Electric Power Research Institute) and IEEE (The Institute of Electrical and Electronics Engineers) Inc. Indexed by SCI, Scopus, INSPEC, CSAD (Chinese Science Abstracts Database), DOAJ, and ProQuest, it serves as a platform for reporting cutting-edge theories, methods, technologies, and applications shaping the development of power systems in energy transition. The journal offers authors an international platform to enhance the reach and impact of their contributions.