{"title":"受多任务和双分支启发的门控时空合并变换器用于交通预测","authors":"Yongpeng Yang, Zhenzhen Yang, Zhen Yang","doi":"10.1049/2024/8639981","DOIUrl":null,"url":null,"abstract":"<div>\n <p>As an essential part of intelligent transportation system (ITS), traffic forecasting has provided crucial role for traffic management and risk assessment. However, complex spatial–temporal dependencies, heterogeneity, dynamicity, and periodicity of traffic data influence the traffic forecasting performance. Consequently, we propose a novel effective gated spatial–temporal merged transformer (GSTMT) inspired by multimask and dual branch for accurate traffic forecasting in this paper. Specifically, we first conduct a concatenation of gated spatial static mask transformer (GSSMT) and gated spatial dynamic mask transformer (GSDMT) with residual network. The GSSMT and GSDMT evolve from the traditional transformer by making preferable modifications that include gated linear unit (GLU), multimask mechanism including static mask matrix (SMM) and dynamic mask matrix (DMM), and spatial attention (SA). Among them, GLU is to promote the performance of capturing spatial dependency, dynamicity, and heterogeneity due to advanced performance for controlling information flow through layers. Additionally, by developing multimask mechanism including two novel SMM and DMM, the proposed GSTMT can precisely model the static and dynamic spatial structure for effectively highlighting static dependency and dynamicity. And SA is injected for enhancing the ability of capturing spatial dependency of GSSMT and GSDMT. Secondly, we develop a dual-branch gated temporal transformer (DBGTT) for capturing temporal dependency, heterogeneity, dynamicity, and periodicity via incorporating the GLU and mixed time series decomposition (MTD) into traditional transformer. Similarly, we also introduce the GLU for empowering DBGTT with capability of capturing temporal dependency, dynamicity, and heterogeneity. In addition, MTD, which brings dual-branch mechanism, can enhance the DBGTT for capturing more detailed temporal information via exploiting global and periodic profile of traffic data. At last, some experiments, which are performed on several real-world traffic datasets, demonstrate the better results over classic traffic forecasting methods.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8639981","citationCount":"0","resultStr":"{\"title\":\"Gated Spatial–Temporal Merged Transformer Inspired by Multimask and Dual Branch for Traffic Forecasting\",\"authors\":\"Yongpeng Yang, Zhenzhen Yang, Zhen Yang\",\"doi\":\"10.1049/2024/8639981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>As an essential part of intelligent transportation system (ITS), traffic forecasting has provided crucial role for traffic management and risk assessment. However, complex spatial–temporal dependencies, heterogeneity, dynamicity, and periodicity of traffic data influence the traffic forecasting performance. Consequently, we propose a novel effective gated spatial–temporal merged transformer (GSTMT) inspired by multimask and dual branch for accurate traffic forecasting in this paper. Specifically, we first conduct a concatenation of gated spatial static mask transformer (GSSMT) and gated spatial dynamic mask transformer (GSDMT) with residual network. The GSSMT and GSDMT evolve from the traditional transformer by making preferable modifications that include gated linear unit (GLU), multimask mechanism including static mask matrix (SMM) and dynamic mask matrix (DMM), and spatial attention (SA). Among them, GLU is to promote the performance of capturing spatial dependency, dynamicity, and heterogeneity due to advanced performance for controlling information flow through layers. Additionally, by developing multimask mechanism including two novel SMM and DMM, the proposed GSTMT can precisely model the static and dynamic spatial structure for effectively highlighting static dependency and dynamicity. And SA is injected for enhancing the ability of capturing spatial dependency of GSSMT and GSDMT. Secondly, we develop a dual-branch gated temporal transformer (DBGTT) for capturing temporal dependency, heterogeneity, dynamicity, and periodicity via incorporating the GLU and mixed time series decomposition (MTD) into traditional transformer. Similarly, we also introduce the GLU for empowering DBGTT with capability of capturing temporal dependency, dynamicity, and heterogeneity. In addition, MTD, which brings dual-branch mechanism, can enhance the DBGTT for capturing more detailed temporal information via exploiting global and periodic profile of traffic data. At last, some experiments, which are performed on several real-world traffic datasets, demonstrate the better results over classic traffic forecasting methods.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/8639981\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/8639981\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/8639981","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Gated Spatial–Temporal Merged Transformer Inspired by Multimask and Dual Branch for Traffic Forecasting
As an essential part of intelligent transportation system (ITS), traffic forecasting has provided crucial role for traffic management and risk assessment. However, complex spatial–temporal dependencies, heterogeneity, dynamicity, and periodicity of traffic data influence the traffic forecasting performance. Consequently, we propose a novel effective gated spatial–temporal merged transformer (GSTMT) inspired by multimask and dual branch for accurate traffic forecasting in this paper. Specifically, we first conduct a concatenation of gated spatial static mask transformer (GSSMT) and gated spatial dynamic mask transformer (GSDMT) with residual network. The GSSMT and GSDMT evolve from the traditional transformer by making preferable modifications that include gated linear unit (GLU), multimask mechanism including static mask matrix (SMM) and dynamic mask matrix (DMM), and spatial attention (SA). Among them, GLU is to promote the performance of capturing spatial dependency, dynamicity, and heterogeneity due to advanced performance for controlling information flow through layers. Additionally, by developing multimask mechanism including two novel SMM and DMM, the proposed GSTMT can precisely model the static and dynamic spatial structure for effectively highlighting static dependency and dynamicity. And SA is injected for enhancing the ability of capturing spatial dependency of GSSMT and GSDMT. Secondly, we develop a dual-branch gated temporal transformer (DBGTT) for capturing temporal dependency, heterogeneity, dynamicity, and periodicity via incorporating the GLU and mixed time series decomposition (MTD) into traditional transformer. Similarly, we also introduce the GLU for empowering DBGTT with capability of capturing temporal dependency, dynamicity, and heterogeneity. In addition, MTD, which brings dual-branch mechanism, can enhance the DBGTT for capturing more detailed temporal information via exploiting global and periodic profile of traffic data. At last, some experiments, which are performed on several real-world traffic datasets, demonstrate the better results over classic traffic forecasting methods.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf