Xiaoqing Li, Hao Tang, Hai Wang, Gangzhong Miao, Mingang Cheng
{"title":"基于 Jaccard 系数的改进聚类方法在诊断和 RUL 估算中的应用","authors":"Xiaoqing Li, Hao Tang, Hai Wang, Gangzhong Miao, Mingang Cheng","doi":"10.1049/2024/6586622","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Sample clustering techniques play a crucial role in the data-driven state evaluation of electromechanical equipment, and selecting an appropriate similarity measurement method for sample sets helps improve the clustering performance. The Jaccard coefficient is a commonly employed indicator of similarity for scalar set-type samples. In this paper, we propose an incremental clustering algorithm for matrix-type samples by defining an improved Jaccard coefficient. First, a new binary relation is formulated to derive a relationship matrix between samples. Second, an undirected graph is given by using the relationship matrix, and an improved pruning operation is provided to simplify the graph by eliminating redundant edges. Then, a new relationship matrix is generated according to the modified graph, which enables the calculation of the improved Jaccard coefficient. By using the improved Jaccard coefficient, the improved incremental clustering algorithm updates cluster centers by selecting a particular sample to maximize the sum of similarities between the selected sample and other samples within the same cluster. Finally, the effectiveness of the proposed incremental clustering algorithm is demonstrated in fault diagnosis and remaining useful life estimation application scenarios, respectively. The experimental results indicate that the improved algorithm outperforms traditional clustering methods.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6586622","citationCount":"0","resultStr":"{\"title\":\"An Improved Jaccard Coefficient-Based Clustering Approach with Application to Diagnosis and RUL Estimation\",\"authors\":\"Xiaoqing Li, Hao Tang, Hai Wang, Gangzhong Miao, Mingang Cheng\",\"doi\":\"10.1049/2024/6586622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Sample clustering techniques play a crucial role in the data-driven state evaluation of electromechanical equipment, and selecting an appropriate similarity measurement method for sample sets helps improve the clustering performance. The Jaccard coefficient is a commonly employed indicator of similarity for scalar set-type samples. In this paper, we propose an incremental clustering algorithm for matrix-type samples by defining an improved Jaccard coefficient. First, a new binary relation is formulated to derive a relationship matrix between samples. Second, an undirected graph is given by using the relationship matrix, and an improved pruning operation is provided to simplify the graph by eliminating redundant edges. Then, a new relationship matrix is generated according to the modified graph, which enables the calculation of the improved Jaccard coefficient. By using the improved Jaccard coefficient, the improved incremental clustering algorithm updates cluster centers by selecting a particular sample to maximize the sum of similarities between the selected sample and other samples within the same cluster. Finally, the effectiveness of the proposed incremental clustering algorithm is demonstrated in fault diagnosis and remaining useful life estimation application scenarios, respectively. The experimental results indicate that the improved algorithm outperforms traditional clustering methods.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/6586622\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/6586622\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/6586622","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An Improved Jaccard Coefficient-Based Clustering Approach with Application to Diagnosis and RUL Estimation
Sample clustering techniques play a crucial role in the data-driven state evaluation of electromechanical equipment, and selecting an appropriate similarity measurement method for sample sets helps improve the clustering performance. The Jaccard coefficient is a commonly employed indicator of similarity for scalar set-type samples. In this paper, we propose an incremental clustering algorithm for matrix-type samples by defining an improved Jaccard coefficient. First, a new binary relation is formulated to derive a relationship matrix between samples. Second, an undirected graph is given by using the relationship matrix, and an improved pruning operation is provided to simplify the graph by eliminating redundant edges. Then, a new relationship matrix is generated according to the modified graph, which enables the calculation of the improved Jaccard coefficient. By using the improved Jaccard coefficient, the improved incremental clustering algorithm updates cluster centers by selecting a particular sample to maximize the sum of similarities between the selected sample and other samples within the same cluster. Finally, the effectiveness of the proposed incremental clustering algorithm is demonstrated in fault diagnosis and remaining useful life estimation application scenarios, respectively. The experimental results indicate that the improved algorithm outperforms traditional clustering methods.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf