{"title":"探索纳米结构 X 射线光学设备,提高实验室 X 射线衍射成像的空间分辨率","authors":"Masaki Yamanashi","doi":"10.1107/S1600576724005727","DOIUrl":null,"url":null,"abstract":"<p>Analytical methods with wide field range and high spatial resolution are required to observe the distribution of the crystal structure in micro-regions undergoing macroscopic chemical reactions. A recent X-ray diffraction (XRD) imaging method combines XRD with an X-ray optical device such as a glass polycapillary consisting of a bundle of numerous monocapillaries. The former provides the crystal structure, while the latter controls the shape of the incident or diffracted X-rays and retains the positional information of the sample. Although reducing the monocapillary pore size should improve the spatial resolution, manufacturing technology challenges must be overcome. Here, an anodic aluminium oxide (AAO) film, which forms self-ordered porous nanostructures by anodic oxidation in an electrolyte, is applied as an X-ray optical device. The AAO film (pore diameter: 110 nm; size of the disc: 11 mm; and thickness: 620 µm) was fabricated by anodization in a mixture of oxalic acid and ethylene glycol. The film was incorporated into a laboratory XRD instrument. Compared with using a glass polycapillary alone, using a combination of a glass polycapillary and the AAO film improved the spatial resolution of the XRD imaging method by 40%. This XRD imaging method should not only provide practical analysis in a laboratory environment but also support various observations of the crystal structure distribution.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring a nanostructured X-ray optical device for improved spatial resolution in laboratory X-ray diffraction imaging\",\"authors\":\"Masaki Yamanashi\",\"doi\":\"10.1107/S1600576724005727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Analytical methods with wide field range and high spatial resolution are required to observe the distribution of the crystal structure in micro-regions undergoing macroscopic chemical reactions. A recent X-ray diffraction (XRD) imaging method combines XRD with an X-ray optical device such as a glass polycapillary consisting of a bundle of numerous monocapillaries. The former provides the crystal structure, while the latter controls the shape of the incident or diffracted X-rays and retains the positional information of the sample. Although reducing the monocapillary pore size should improve the spatial resolution, manufacturing technology challenges must be overcome. Here, an anodic aluminium oxide (AAO) film, which forms self-ordered porous nanostructures by anodic oxidation in an electrolyte, is applied as an X-ray optical device. The AAO film (pore diameter: 110 nm; size of the disc: 11 mm; and thickness: 620 µm) was fabricated by anodization in a mixture of oxalic acid and ethylene glycol. The film was incorporated into a laboratory XRD instrument. Compared with using a glass polycapillary alone, using a combination of a glass polycapillary and the AAO film improved the spatial resolution of the XRD imaging method by 40%. This XRD imaging method should not only provide practical analysis in a laboratory environment but also support various observations of the crystal structure distribution.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724005727\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724005727","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
要观察正在发生宏观化学反应的微观区域的晶体结构分布,需要采用具有宽场范围和高空间分辨率的分析方法。最近的一种 X 射线衍射(XRD)成像方法将 XRD 与 X 射线光学设备(如由无数单毛细管组成的玻璃聚毛细管)相结合。前者提供晶体结构,后者控制入射或衍射 X 射线的形状,并保留样品的位置信息。虽然缩小单毛细管孔径可以提高空间分辨率,但必须克服制造技术上的挑战。阳极氧化铝(AAO)薄膜在电解质中通过阳极氧化形成了自有序的多孔纳米结构,本文将其用作 X 射线光学器件。AAO 薄膜(孔径:110 纳米;圆盘尺寸:11 毫米;厚度:620 微米)是在草酸和乙二醇的混合物中通过阳极氧化制得的。该薄膜被安装在实验室 XRD 仪器中。与单独使用玻璃聚毛细管相比,结合使用玻璃聚毛细管和 AAO 薄膜可将 XRD 成像方法的空间分辨率提高 40%。这种 XRD 成像方法不仅能在实验室环境中进行实用分析,还能支持对晶体结构分布的各种观测。
Exploring a nanostructured X-ray optical device for improved spatial resolution in laboratory X-ray diffraction imaging
Analytical methods with wide field range and high spatial resolution are required to observe the distribution of the crystal structure in micro-regions undergoing macroscopic chemical reactions. A recent X-ray diffraction (XRD) imaging method combines XRD with an X-ray optical device such as a glass polycapillary consisting of a bundle of numerous monocapillaries. The former provides the crystal structure, while the latter controls the shape of the incident or diffracted X-rays and retains the positional information of the sample. Although reducing the monocapillary pore size should improve the spatial resolution, manufacturing technology challenges must be overcome. Here, an anodic aluminium oxide (AAO) film, which forms self-ordered porous nanostructures by anodic oxidation in an electrolyte, is applied as an X-ray optical device. The AAO film (pore diameter: 110 nm; size of the disc: 11 mm; and thickness: 620 µm) was fabricated by anodization in a mixture of oxalic acid and ethylene glycol. The film was incorporated into a laboratory XRD instrument. Compared with using a glass polycapillary alone, using a combination of a glass polycapillary and the AAO film improved the spatial resolution of the XRD imaging method by 40%. This XRD imaging method should not only provide practical analysis in a laboratory environment but also support various observations of the crystal structure distribution.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.