带饱和约束的多电机有限时间协调控制

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2024-06-20 DOI:10.1049/cth2.12684
Changfan Zhang, Junming Zhang, Jing He, Lin Jia, Yang Zhou
{"title":"带饱和约束的多电机有限时间协调控制","authors":"Changfan Zhang,&nbsp;Junming Zhang,&nbsp;Jing He,&nbsp;Lin Jia,&nbsp;Yang Zhou","doi":"10.1049/cth2.12684","DOIUrl":null,"url":null,"abstract":"<p>A multi-motor coordinated tracking control strategy based on a disturbance sliding-mode observer and an anti-saturation non-singular fast-terminal sliding mode is proposed to address the issues of slow convergence and controller output saturation in multi-motor coordinated control systems. Firstly, a mathematical model of a multi-motor traction system considering uncertain parameter perturbations, external disturbances, and dead zones was established. Secondly, a disturbance sliding-mode observer was designed based on the mathematical model to eliminate motor disturbances and estimate the torque. The observer's forward compensation was added to design a total-consensus-based fast non-singular terminal sliding-mode controller. Then, a fast anti-saturation auxiliary system with fast finite-time convergence was constructed. Finally, a comparative experiment was conducted with traditional anti-saturation sliding-mode control to demonstrate that the proposed method had faster convergence, stronger disturbance rejection, and better tracking performance in the presence of multi-motor parameter perturbations, unknown disturbances, and input saturation.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 12","pages":"1586-1596"},"PeriodicalIF":2.2000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12684","citationCount":"0","resultStr":"{\"title\":\"Coordinated finite-time control of multiple motors with saturation constraints\",\"authors\":\"Changfan Zhang,&nbsp;Junming Zhang,&nbsp;Jing He,&nbsp;Lin Jia,&nbsp;Yang Zhou\",\"doi\":\"10.1049/cth2.12684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multi-motor coordinated tracking control strategy based on a disturbance sliding-mode observer and an anti-saturation non-singular fast-terminal sliding mode is proposed to address the issues of slow convergence and controller output saturation in multi-motor coordinated control systems. Firstly, a mathematical model of a multi-motor traction system considering uncertain parameter perturbations, external disturbances, and dead zones was established. Secondly, a disturbance sliding-mode observer was designed based on the mathematical model to eliminate motor disturbances and estimate the torque. The observer's forward compensation was added to design a total-consensus-based fast non-singular terminal sliding-mode controller. Then, a fast anti-saturation auxiliary system with fast finite-time convergence was constructed. Finally, a comparative experiment was conducted with traditional anti-saturation sliding-mode control to demonstrate that the proposed method had faster convergence, stronger disturbance rejection, and better tracking performance in the presence of multi-motor parameter perturbations, unknown disturbances, and input saturation.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 12\",\"pages\":\"1586-1596\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12684\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12684\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12684","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对多电机协调控制系统中收敛速度慢和控制器输出饱和的问题,提出了一种基于扰动滑模观测器和抗饱和非鞘翅式快速终端滑模的多电机协调跟踪控制策略。首先,建立了考虑不确定参数扰动、外部干扰和死区的多电机牵引系统数学模型。其次,根据数学模型设计了扰动滑模观测器,以消除电机扰动并估计转矩。观测器的正向补偿被添加到设计基于总共识的快速非矢量终端滑模控制器中。然后,构建了具有快速有限时间收敛性的快速抗饱和辅助系统。最后,与传统的抗饱和滑模控制进行了对比实验,证明在多电机参数扰动、未知干扰和输入饱和的情况下,所提出的方法具有更快的收敛速度、更强的干扰抑制能力和更好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coordinated finite-time control of multiple motors with saturation constraints

A multi-motor coordinated tracking control strategy based on a disturbance sliding-mode observer and an anti-saturation non-singular fast-terminal sliding mode is proposed to address the issues of slow convergence and controller output saturation in multi-motor coordinated control systems. Firstly, a mathematical model of a multi-motor traction system considering uncertain parameter perturbations, external disturbances, and dead zones was established. Secondly, a disturbance sliding-mode observer was designed based on the mathematical model to eliminate motor disturbances and estimate the torque. The observer's forward compensation was added to design a total-consensus-based fast non-singular terminal sliding-mode controller. Then, a fast anti-saturation auxiliary system with fast finite-time convergence was constructed. Finally, a comparative experiment was conducted with traditional anti-saturation sliding-mode control to demonstrate that the proposed method had faster convergence, stronger disturbance rejection, and better tracking performance in the presence of multi-motor parameter perturbations, unknown disturbances, and input saturation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Neuro-adaptive prescribed performance control for spacecraft rendezvous based on the fully-actuated system approach Adaptive polynomial Kalman filter for nonlinear state estimation in modified AR time series with fixed coefficients Observer-based adaptive control of vehicle platoon with uncertainty and input constraints An improved two-degree-of-freedom ADRC for asynchronous motor vector system Receding horizon control for persistent monitoring tasks with monitoring count requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1