Rongyao Yu, Fang Yang, Yi Liu, Jianghui He, Qingjiang Pang, Yang Song
{"title":"无参考高动态范围全向图像质量度量:从全局和局部统计特征的角度看图像质量","authors":"Rongyao Yu, Fang Yang, Yi Liu, Jianghui He, Qingjiang Pang, Yang Song","doi":"10.1049/2024/5653845","DOIUrl":null,"url":null,"abstract":"<div>\n <p>High dynamic range omnidirectional image (HOI) can provide more real and immersive watching experience for viewers, thus has become an important presentation of virtual reality technology. However, both the system processing and the characteristics of HOI make the design of HOI quality metric (HOIQM) a challenging issue. In this work, considering the difference between whole field of view (FoV) and viewer-selected viewport, distortion features from both global and local perspectives are extracted, and a blind HOIQM is proposed. Specifically, because different regions have different projections in SSP projection, we have constructed the optimal bivariate response pair in the equatorial region and bipolar region according to their projection direction, and parameters in the BGGD based-spatial oriented correlation model are extracted as global statistical features. Meanwhile, combined with the visual perception for HOI, the key blocks are determined in equatorial region, and the local statistical characteristics of the key blocks are extracted by analyzing the distribution of multiscale structure information. Finally, the global and local features are regressed by SVR to obtain the final HOI quality. Experimental results on NBU-HOID database demonstrate that the proposed quality metric is outperformed the existing representative quality metrics and is more consistent with human visual perception for HOI.</p>\n </div>","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"2024 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5653845","citationCount":"0","resultStr":"{\"title\":\"No-Reference High Dynamic Range Omnidirectional Image Quality Metric: From the Perspective of Global and Local Statistical Characteristics\",\"authors\":\"Rongyao Yu, Fang Yang, Yi Liu, Jianghui He, Qingjiang Pang, Yang Song\",\"doi\":\"10.1049/2024/5653845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>High dynamic range omnidirectional image (HOI) can provide more real and immersive watching experience for viewers, thus has become an important presentation of virtual reality technology. However, both the system processing and the characteristics of HOI make the design of HOI quality metric (HOIQM) a challenging issue. In this work, considering the difference between whole field of view (FoV) and viewer-selected viewport, distortion features from both global and local perspectives are extracted, and a blind HOIQM is proposed. Specifically, because different regions have different projections in SSP projection, we have constructed the optimal bivariate response pair in the equatorial region and bipolar region according to their projection direction, and parameters in the BGGD based-spatial oriented correlation model are extracted as global statistical features. Meanwhile, combined with the visual perception for HOI, the key blocks are determined in equatorial region, and the local statistical characteristics of the key blocks are extracted by analyzing the distribution of multiscale structure information. Finally, the global and local features are regressed by SVR to obtain the final HOI quality. Experimental results on NBU-HOID database demonstrate that the proposed quality metric is outperformed the existing representative quality metrics and is more consistent with human visual perception for HOI.</p>\\n </div>\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/2024/5653845\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/2024/5653845\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/2024/5653845","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
No-Reference High Dynamic Range Omnidirectional Image Quality Metric: From the Perspective of Global and Local Statistical Characteristics
High dynamic range omnidirectional image (HOI) can provide more real and immersive watching experience for viewers, thus has become an important presentation of virtual reality technology. However, both the system processing and the characteristics of HOI make the design of HOI quality metric (HOIQM) a challenging issue. In this work, considering the difference between whole field of view (FoV) and viewer-selected viewport, distortion features from both global and local perspectives are extracted, and a blind HOIQM is proposed. Specifically, because different regions have different projections in SSP projection, we have constructed the optimal bivariate response pair in the equatorial region and bipolar region according to their projection direction, and parameters in the BGGD based-spatial oriented correlation model are extracted as global statistical features. Meanwhile, combined with the visual perception for HOI, the key blocks are determined in equatorial region, and the local statistical characteristics of the key blocks are extracted by analyzing the distribution of multiscale structure information. Finally, the global and local features are regressed by SVR to obtain the final HOI quality. Experimental results on NBU-HOID database demonstrate that the proposed quality metric is outperformed the existing representative quality metrics and is more consistent with human visual perception for HOI.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf