AutoRefl:中子反射测量中的主动学习,实现快速数据采集

IF 5.2 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Applied Crystallography Pub Date : 2024-07-31 DOI:10.1107/S1600576724006447
David P. Hoogerheide, Frank Heinrich
{"title":"AutoRefl:中子反射测量中的主动学习,实现快速数据采集","authors":"David P. Hoogerheide,&nbsp;Frank Heinrich","doi":"10.1107/S1600576724006447","DOIUrl":null,"url":null,"abstract":"<p>Neutron reflectometry (NR) is a powerful technique for interrogating the structure of thin films at interfaces. Because NR measurements are slow and instrument availability is limited, measurement efficiency is paramount. One approach to improving measurement efficiency is active learning (AL), in which the next measurement configurations are selected on the basis of information gained from the partial data collected so far. <i>AutoRefl</i>, a model-based AL algorithm for neutron reflectometry measurements, is presented in this manuscript. <i>AutoRefl</i> uses the existing measurements of a function to choose both the position and the duration of the next measurement. <i>AutoRefl</i> maximizes the information acquisition rate in specific model parameters of interest and uses the well defined signal-to-noise ratio in counting measurements to choose appropriate measurement times. Since continuous measurement is desirable for practical implementation, <i>AutoRefl</i> features forecasting, in which the optimal positions of multiple future measurements are predicted from existing measurements. The performance of <i>AutoRefl</i> is compared with that of well established best practice measurements for supported lipid bilayer samples using realistic digital twins of monochromatic and polychromatic reflectometers. <i>AutoRefl</i> is shown to improve NR measurement speeds in all cases significantly.</p>","PeriodicalId":48737,"journal":{"name":"Journal of Applied Crystallography","volume":"57 4","pages":"1192-1204"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AutoRefl: active learning in neutron reflectometry for fast data acquisition\",\"authors\":\"David P. Hoogerheide,&nbsp;Frank Heinrich\",\"doi\":\"10.1107/S1600576724006447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neutron reflectometry (NR) is a powerful technique for interrogating the structure of thin films at interfaces. Because NR measurements are slow and instrument availability is limited, measurement efficiency is paramount. One approach to improving measurement efficiency is active learning (AL), in which the next measurement configurations are selected on the basis of information gained from the partial data collected so far. <i>AutoRefl</i>, a model-based AL algorithm for neutron reflectometry measurements, is presented in this manuscript. <i>AutoRefl</i> uses the existing measurements of a function to choose both the position and the duration of the next measurement. <i>AutoRefl</i> maximizes the information acquisition rate in specific model parameters of interest and uses the well defined signal-to-noise ratio in counting measurements to choose appropriate measurement times. Since continuous measurement is desirable for practical implementation, <i>AutoRefl</i> features forecasting, in which the optimal positions of multiple future measurements are predicted from existing measurements. The performance of <i>AutoRefl</i> is compared with that of well established best practice measurements for supported lipid bilayer samples using realistic digital twins of monochromatic and polychromatic reflectometers. <i>AutoRefl</i> is shown to improve NR measurement speeds in all cases significantly.</p>\",\"PeriodicalId\":48737,\"journal\":{\"name\":\"Journal of Applied Crystallography\",\"volume\":\"57 4\",\"pages\":\"1192-1204\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Crystallography\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724006447\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1107/S1600576724006447","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

中子反射测量法(NR)是一种功能强大的技术,可用于探测界面处的薄膜结构。由于中子反射测量速度较慢且仪器有限,因此测量效率至关重要。提高测量效率的一种方法是主动学习(AL),即根据目前收集到的部分数据信息选择下一步的测量配置。本手稿介绍的 AutoRefl 是一种基于模型的中子反射测量 AL 算法。AutoRefl 利用函数的现有测量结果来选择下一次测量的位置和持续时间。AutoRefl 可最大限度地提高特定相关模型参数的信息获取率,并利用计数测量中定义明确的信噪比来选择适当的测量时间。由于在实际应用中需要连续测量,AutoRefl 具有预测功能,即根据现有测量结果预测未来多次测量的最佳位置。使用单色和多色反射仪的现实数字孪晶,将 AutoRefl 的性能与支持脂质双分子层样品的公认最佳测量方法的性能进行了比较。结果表明,在所有情况下,AutoRefl 都能显著提高 NR 测量速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AutoRefl: active learning in neutron reflectometry for fast data acquisition

Neutron reflectometry (NR) is a powerful technique for interrogating the structure of thin films at interfaces. Because NR measurements are slow and instrument availability is limited, measurement efficiency is paramount. One approach to improving measurement efficiency is active learning (AL), in which the next measurement configurations are selected on the basis of information gained from the partial data collected so far. AutoRefl, a model-based AL algorithm for neutron reflectometry measurements, is presented in this manuscript. AutoRefl uses the existing measurements of a function to choose both the position and the duration of the next measurement. AutoRefl maximizes the information acquisition rate in specific model parameters of interest and uses the well defined signal-to-noise ratio in counting measurements to choose appropriate measurement times. Since continuous measurement is desirable for practical implementation, AutoRefl features forecasting, in which the optimal positions of multiple future measurements are predicted from existing measurements. The performance of AutoRefl is compared with that of well established best practice measurements for supported lipid bilayer samples using realistic digital twins of monochromatic and polychromatic reflectometers. AutoRefl is shown to improve NR measurement speeds in all cases significantly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Crystallography
Journal of Applied Crystallography CHEMISTRY, MULTIDISCIPLINARYCRYSTALLOGRAPH-CRYSTALLOGRAPHY
CiteScore
7.80
自引率
3.30%
发文量
178
期刊介绍: Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.
期刊最新文献
Simulation of diffraction patterns for Ruddlesden–Popper (RP) tetragonal structures with RP faults Data quality in laboratory convergent-beam X-ray total scattering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1