宣传人工智能在农业和环境研究中的应用

IF 2.3 4区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Agricultural & Environmental Letters Pub Date : 2024-07-31 DOI:10.1002/ael2.20144
Aaron Lee M. Daigh, Samira H. Daroub, Peter M. Kyveryga, Mark E. Sorrells, Nithya Rajan, James A. Ippolito, Endy Kailer, Christine S. Booth, Umesh Acharya, Deepak Ghimire, Saurav Das, Bijesh Maharjan, Yufeng Ge
{"title":"宣传人工智能在农业和环境研究中的应用","authors":"Aaron Lee M. Daigh,&nbsp;Samira H. Daroub,&nbsp;Peter M. Kyveryga,&nbsp;Mark E. Sorrells,&nbsp;Nithya Rajan,&nbsp;James A. Ippolito,&nbsp;Endy Kailer,&nbsp;Christine S. Booth,&nbsp;Umesh Acharya,&nbsp;Deepak Ghimire,&nbsp;Saurav Das,&nbsp;Bijesh Maharjan,&nbsp;Yufeng Ge","doi":"10.1002/ael2.20144","DOIUrl":null,"url":null,"abstract":"<p>Transformative technologies such as artificial intelligence (AI) make difficult tasks more accessible and convenient. Since 2018, the use of AI in research has increased drastically, with annual publication rates of 3–5 times higher than pre-2017. Currently, &gt;100,000 manuscripts using AI are published annually within science and engineering, and &gt;20,000 of these belong to the agricultural and environmental fields. Given the magnitude of use, clear communication on how AI is used and how it helps advance scientific knowledge is essential. Clear communication is perhaps more necessary with AI than previous technologies due to its broad and flexible spectrum of uses, the “black-box” nature of deep-learning algorithms, and ongoing debates regarding AI's predictive power versus knowledge of first-principles mechanistic and process-based theories and models. In this commentary, we provide guidelines and discussion points to the scientific community to ensure transparent and effective communication of AI research in agricultural and environmental research publications.</p>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":"9 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20144","citationCount":"0","resultStr":"{\"title\":\"Communicating the use of artificial intelligence in agricultural and environmental research\",\"authors\":\"Aaron Lee M. Daigh,&nbsp;Samira H. Daroub,&nbsp;Peter M. Kyveryga,&nbsp;Mark E. Sorrells,&nbsp;Nithya Rajan,&nbsp;James A. Ippolito,&nbsp;Endy Kailer,&nbsp;Christine S. Booth,&nbsp;Umesh Acharya,&nbsp;Deepak Ghimire,&nbsp;Saurav Das,&nbsp;Bijesh Maharjan,&nbsp;Yufeng Ge\",\"doi\":\"10.1002/ael2.20144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transformative technologies such as artificial intelligence (AI) make difficult tasks more accessible and convenient. Since 2018, the use of AI in research has increased drastically, with annual publication rates of 3–5 times higher than pre-2017. Currently, &gt;100,000 manuscripts using AI are published annually within science and engineering, and &gt;20,000 of these belong to the agricultural and environmental fields. Given the magnitude of use, clear communication on how AI is used and how it helps advance scientific knowledge is essential. Clear communication is perhaps more necessary with AI than previous technologies due to its broad and flexible spectrum of uses, the “black-box” nature of deep-learning algorithms, and ongoing debates regarding AI's predictive power versus knowledge of first-principles mechanistic and process-based theories and models. In this commentary, we provide guidelines and discussion points to the scientific community to ensure transparent and effective communication of AI research in agricultural and environmental research publications.</p>\",\"PeriodicalId\":48502,\"journal\":{\"name\":\"Agricultural & Environmental Letters\",\"volume\":\"9 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20144\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Environmental Letters\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20144\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20144","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)等变革性技术使艰巨的任务变得更加容易和便捷。2018年以来,人工智能在科研领域的应用急剧增加,年发表率是2017年前的3-5倍。目前,>每年在科学和工程领域发表的使用人工智能的稿件达10万篇,>其中2万篇属于农业和环境领域。鉴于人工智能的使用规模之大,就如何使用人工智能以及人工智能如何帮助推动科学知识的发展进行清晰的交流至关重要。与以往的技术相比,人工智能可能更需要清晰的沟通,这是因为人工智能的用途广泛而灵活,深度学习算法具有 "黑箱 "性质,而且关于人工智能的预测能力与第一原理机械论和基于过程的理论和模型知识之间的争论仍在继续。在这篇评论中,我们为科学界提供了指导原则和讨论要点,以确保在农业和环境研究出版物中对人工智能研究进行透明、有效的交流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Communicating the use of artificial intelligence in agricultural and environmental research

Transformative technologies such as artificial intelligence (AI) make difficult tasks more accessible and convenient. Since 2018, the use of AI in research has increased drastically, with annual publication rates of 3–5 times higher than pre-2017. Currently, >100,000 manuscripts using AI are published annually within science and engineering, and >20,000 of these belong to the agricultural and environmental fields. Given the magnitude of use, clear communication on how AI is used and how it helps advance scientific knowledge is essential. Clear communication is perhaps more necessary with AI than previous technologies due to its broad and flexible spectrum of uses, the “black-box” nature of deep-learning algorithms, and ongoing debates regarding AI's predictive power versus knowledge of first-principles mechanistic and process-based theories and models. In this commentary, we provide guidelines and discussion points to the scientific community to ensure transparent and effective communication of AI research in agricultural and environmental research publications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
3.80%
发文量
28
期刊最新文献
Impact of cultural control practices and fertilization on snail abundance and peanut yield The influence of climate on varietal similarities across countries Our connections to soil health through simile When are you measuring soil β-glucosidase activities in cropping systems? Soil organic matter characteristics of four soil types under different conservation strategies across Hubei Province
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1